
AD-A254 878
Contract N00014-89-C-0137
Task Final Technical Report
Contract LIN 0003, 0004, 0005, 0006 (complete)

and LIN 0001, 0002 (partial)

Active Control of Complex Systems
Via Dynamic (Recurrent) Neural

Networks

David G. Ward

B. Eugene Parker, Jr., Ph.D.

- Roger L. Barron

I.. May 30, 1992

ELECTE
UG 2 61992

A
Prepared for:

DEPARTMENT OF THE NAVY
Office of the Chief of Naval Research

Applied Research and Technology Division
800 North Quincy Street

Arlington, Virginia 22217-5000

,This doTument has been 0ppToved

tol public releasa and sale; its
distibution is unlimited

Prepared by:

BARRON ASSOCIATES, INC.
Route 1, Box 159

Stanardsville, Virginia 22973 t 92-23590

92 8 20 024

Unclassi fied
:AtYC-.AS5.FICA41MY OF THIS PACr

r- " i m i iiForrm A; :!rCvedREPORT DOCUMENTATION PAGE OMSNo. ...

:a. REPORT SiCJRITY CLA..S5FIATION Ib. RES7RIffIE MARKINGS
Unclassified N/A
-.C_"RITY CLASSIFICATION AUThORITY',o i. ..

___ ___-____nt- _ bon appomved
..... ~Sf]WH i~ %lease and swle, ibts2 , OEC.ASSIFICA ION/ OWNGRADING SC DULE / c hit~l tiO n is nl d il 1

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMSE,'S)

141-02/03-F

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7 .NAME OF MONITORING ORGANIZATION

Barron Associates, Inc. j (If applicable) Office of the Chief of Naval Research

5c. ADORESS (Cty, State, and ZIP Coe") 7b. ADDRESS (Cry, Scare, and ZIP Code)

Route 1, Box 159 800 North Quincy Street

Stanardsville, VA 22973-9511 Arlington, VA 22217-5000

8.. NAME OF FUNDING IISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicable) N00014-89-C-0137

8c. ADRE---S (C0, State, and ZP Coce) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNI
ELEMENT NO. No. NO. AC:'S1.SoN

'.TLE (i duce Security Ola=jficatzon)

Active Control of Complex Systems Via Dynamic (Recurrent) Neural Networks

:Z. PERSONAL AUTHOR(S)
David G. Ward, B. Eugene Parker, Jr. Ph.D., and Roger L. Barron

1.3a. TYPE OF REPOR.T 13b. TIME COVERED 14~ DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Task Final Report FROM 4-1-89TO5-Q-92 1992 May 30
16. SUPPLEMENTARY 1' TATION

Contract Line Item Nos. 0001-0006, inclusive
,7. COSATI COOES 1 18. SUBJECT TER.MS (Contnue on revere if necessary and Identify by block num.oer)

FIELD I GROUPS SUs3ROUP Artificial Neural Networks Estimation

Active Control Classification
vDynamir Neural Networks (Continued on reverse)

9. ABSTRACT (Continue on reverse if necesary and identify by block number)
In this work the synthesis of artificial neural networks is examined from the perspective of statistical

estimation of functions, and development of synthesis algorithms is centered on new tools for building dynamic
(recurrent) neural networks that incorporate internal feedbacks and time delays. The DynNet algorithm is described;
it learns the feedforward and feedback structure of a nonlinear dynamic neural network and optimizes the coefficients
therein. Applications of the algorithm are presented for the following areas:

time-series predictions related to an advanced turbopropulsion combustion process

rapid predictions of the responses of a synchronous generator to changes in its input and load conditions

predictions of the behavior of a deterministic chaotic process

on-line, real-time, optimal two-point boundary-value guidance of an air-to-air missile

The report outlines the advantages of dynamic neural networks and probes the issues related to their synthesis and use.

*0. 0ISTRIBUTION ;AVAILASIUTY OF ABSTRACT 21. ABSTRACT SECURITY CI.ASSIFICATION

UNCL.ASSIFIEDIUNLIMITED C SAM! AS RPT. L OTIC USERS Unclassified

.a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TE'EPHONi (Inciude Area Code) j22C. OFFICE SYMBC"

D F 1r 473, 2'UN 86 Previous editior are obsolete. SFVjR!7Y CLA !.ICA-ION Or' 7 PAGE

I
3. DISTRIBUTION DODAAD NUMBER OF

ADDRESSEE CODE COPIES

Scientific Officer, OCNR N00014 1
Administrative Contracting I
.Officer, DCAS S2101A 1

.Director, Naval Research
Laboratory, ATTN: Code 2627 N00173 1 I

Defense Technical Information
Center S47031 12
Bldg. 5, Cameran Station
Alexandria, VA 22314

18. SUBJECT TERMS

Recurrent Neural Networks
Statistiz.a EFtimation of Functions
Learning Algorithms I
Modeling
Prediction
Chaotic Systems
Combustion Control

Synchronous Machines
Missile Guidance

Accesion For

NTIS CRA&I _

DTIC lAB LI
Unannouoced
Justification

Disiributioo I

Dist £pe. al I

A1

I)ICQ'AII

FOREWORD

Under the terms of Contract N00014-89-C-0137 with the Office of the Chief of Naval
Research, Barron Associates, Inc. (BAI) has, since April 15, 1989, engaged in study of the synthesis and
use of artificial neural networks, particularly neural networks containing internal feedback pathways
along with the customary feedforward connections. These are here called dynamic neural networks,
and in the literature are generally referred to as recurrent neural networks. This work has been
supported primarily under the OCNR Accelerated Research Initiative in Active Control, and the
applications that here receive greatest attention relate to improved combustion control for
turbopropulsion systems, a focus of the Active Control Initiative. Additionally, support has been
provided by the Defense Advanced Research Projects Agency via the above contract to investigate
applications of neural networks (principally dynamic neural networks) to improved modeling and
prediction of the responses of a synchronous generator to changes in its input and load conditions.

This report is the final technical report on BAI's work under the Active Control Initiative and
the synchronous generator task. This report fulfills the requirements of Line Item Nos. 0003 and 0004,
and the funded portion of the work scope under Line Item Nos. 0005 and 0006 of the subject contract. This
report also partially fulfills the requirements of Line Item Nos. 0001 and 0002. Under modifications to
the contract, BAI has also performed and is continuing research in several areas involving static and
dynamic neural networks. These areas, which include transient signal processing, acoustic radiation,
and multivariable control, will be documented in future technical reports for OCNR.

Many individuals in the Government, in industry, and in academia have contributed
importantly to the work reported. The OCNR Scientific Officers for this work have been Dr. Robert J.
Hansen (now with The Pennsylvania State University), Dr. Eric W. Hendricks, and Mr. James G.
Smith. This work would not have been accomplished without their guidance, support, and
encouragement, for which the authors are deeply appreciative. Also, the support and direction of the
Submarine Technology Program of DARPA under Captain Theodore L. Rice, USN, is gratefully
acknowledged, as is the help of Mr. David Young of the Planning Research Corporation DARPA Office.

The authors thank Drs. Ephraim Gutmark and Klaus W. Schadow of the Naval Air Warfare
Center, Weapons Division, China Lake, CA, for their participation in the experimental phases of the
work reported herein in Section 4 and Appendix E, and other collaborative work being reported
separately by them. Likewise, the authors thank Professors Craig T. Bowman and J. David Powell of
the Mechanical Engineering Department, Stanford University, for collaborative work being reported
separately by them.

Within BAI, the work of Messrs. Dean W. Abbott, Richard L. Cellucci, and Todd M. Nigro has
been of considerable benefit to earlier phases of this research. Dr. Andrew R. Barron, Associate
Professor of Statistics and of Electrical and Computer Engineering, University of Illinois, has provided
invaluable advice on information-theoretic aspects of neural network synthesis. The authors also
thank Dr. H. Vincent Poor, Professor of Electrical Engineering, Princeton Unviersity, for his critique of
the manuscript. David G. Ward has written Sections 2 and 3 of this report. Dr. B. Eugene Parker has
prepared Section 4. All authors of this report are staff members of Barron Associates, Inc. Roger L.
Barron served as Principal Investigator for BAI.

Furthermore, the authors express their appreciation to G. Clark Smith of the BAI staff for
assistance in preparing Appendix A, and to Susan W. Reynolds of the BAI staff for the word processing
involved in preparation of this report.

The continuing research by BAI under the subject contract is now under the direction of OCNR
Code 122 Scientific Officers Dr. Albert 1. Tucker, Dr. Eric W. Hendricks, and Commander Dan Forkel,
USN.

This report is published in the interest of scientific and technical exchange. Publication does
not constitute approval or disapproval of the ideas or findings herein by the United States Government.

I
I

ABSTRACT

In this work the synthesis of artificial neural networks is examined from the perspective of I
statistical estimation of functions, and development of synthesis algorithms is centered on new tools for
building dynamic (recurrent) neural networks that incorporate internal feedbacks and time delays. The
DynNet algorithm is described; it learns the feedforward and feedback structure of a nonlinear
dynamic neural network and optimizes the coefficients therein. Applications of the algorithm are
presented for the following areas:

time-series predictions related to an advanced turbopropulsion combustion process

rapid predictions of the responses of a synchronous generator to changes in its input
and load conditionsI

predictions of the behavior of a deterministic chaotic process

on-line, real-time, optimal two-point boundary-value guidance of an air-to-air
missile

The report outlines the advantages of dynamic neural networks and probes the issues related to their I
synthesis and use.

I

I
I
I
I
I
I
I
I

ii I

TABLE OF CONTENTS

FO REW O RD ... i

A BSTRA CT .. ii

1. IN TRO DUCTIO N AN D SU M M ARY .. 3

2. FUN CTION ESTIM ATIO N PRIN CIPLES ... 7

2.1 Introduction .. 7

2.2 N etw ork Structure ... 7

2.2.1 N etw ork Inputs and O utputs ... 7

2.2.2 Elem ent Definitions .. 10

2.2.3 Layer Definition ... 17

2.2.4 N etw ork Interconnections ... 17

2.3 N etw ork Training ... 18

2.3.1 The Loss Function ... 19

2.3.2 M odel Selection Criterion ... 22

2.3.3 O ptim ization Strategy .. 25

2.3.4 O ptim ization M ethod .. 27

2.4 Sum m ary .. 31

3. Dynam ic Polynom ial N eural N etw orks .. 33

3.1 Equation-Error and O utput-Error M odeling .. 34

3.2 O ptim ization and Initialization .. 35

3.3 Single Layer MISO Dynamic Network (Dyn3) ... 37

3.3.1 N etw ork Structure .. 37

3.3.2 N etw ork Training .. 42

3.4 Multi-Layer MIMO Dynamic Networks (DynNet) .. 45

3.4.1 N etw ork Structure .. 45

3.4.2 N etw ork Training .. 46

3.4.3 Com m and-Line O ptions .. 49

3.5 Future Research .. 54

4. APPLICA FIlO N EXAM PLES .. 57

4.1 Active Control of Complex Combustion Processes .. 57

4.2 Inverse Control of a D ucted Flam e .. 58

iii

I

4.3 Static Polynomial Neural Network System Identification Results 60 I
4.4 Dynamic Polynomial Neural Network System Identification Results 65I

4.5 Plant Control ... 70

4.6 Modeling Synchronous Machines Using Static and Dynamic PNNs 73

4.6.1 SPNN Prediction of Synchronous Machine State Variable Outputs..75

4.6.2 DPNN Prediction of Synchronous Machine State Variable Outputs..83

5. CONCLUSIONS AND RECOMMENDATIONS ... 93 1
6. R EFER EN C ES ... 97

APPENDIX A: Static Polynomial Neural Network Synthesis Algorithms A-1

APPENDIX B: Optimization Techniques ... B-1 i

APPENDIX C: Prediction of Behavior of a Deterministic Chaotic Process C-1

APPENDIX D: Comparative Study: Static and Dynamic Polynomial Neural I
Networks for Real-Time Optimum TPBV Guidance of a Tactical
Air-Intercept M issile ... D-1 i

APPENDIX E: Active Control of Complex Systems Via Dynamic Neural
Networks: Combustion Processes in Propulsion Systems E-1 i

1
I
I
I
I
I
I
I

iv I

List of Figures

Figure 2.1: Artificial Neural Network Structural Heirarchy 5

Figure 2.2: MIMO Network Controller .. 6

Figure 2.3: Neural Network Used for Data Classification ... 7

Figure 2.4: Generalized Network Element .. 9

Figure 2.5: Example of a "Full Double" Network Element 11

Figure 2.6: Example of a "Sigmoidal" Network Element .. 14

Figure 2.7: Network Interconnections .. 16

Figure 2.8: Optimization Strategy .. 24

Figure 3.1: Equation-Error System Identification ... 32

Figure 3.2: Output-Error System Identification .. 33

Figure 3.3: Sample Dynamic Network ... 34

Figure 3.4: Memory-Feedback (MFB) Nodal Element ... 38

Figure 3.5: Memory-Feedforward (MFF) Nodal Element .. 39

Figure 3.6: Dyn3 Layer and Interconnections (MFB) .. 41

Figure 3.7: Linear (Affine) Element .. 44

Figure 3.8: MIMO DPNN with Intra-Layer Feedback .. 45

Figure 3.9: MIMO DPNN with Output Feedback ... 46

Figure 3.10: DynNet Algorithm for Constructing a MISO DPNN 48

Figure 4.1: Schematic Diagram of Ducted Flame Apparatus 57

Figure 4.2: Control System for Regulating Flame Height or Quality 57

Figure 4.3: Preferred Implementation of Control System for Regulating
Flame Height or Quality ... 58

Figure 4.4: Use of Identified Plant Model in Estimation Experiment 59

Figure 4.5: Static PNN Used in the System Identification Experiments 59

Figure 4.6: Static PNN Prediction of Photodiode Output Using the Same
AM Excitation Signal as that Used to Fit the Model 60

Figure 4.7: Static PNN Prediction of Photodiode Output in Response to AM
Excitation Different than was .. 62

v

I

Figure 4.8: Dynamic PNN Used in the System Identification Experiments 64

Figure 4.9: Dynamic PNN Prediction of Photodiode Output Using the Same
AM Excitation Signal as that Used to Fit the Model 65

Figure 4.10: Dynamic PNN Prediction of Photodiode Output Using Different
AM Excitation Signal than was Used to Fit the Model (viz., I
A C T D 3.1) .. 67

Figure 4.11- Use of Direct Inverse Model in Feedforward Control Experiment 69 3
Figure 4.12: Unit Step Input and Response of Direct Inverse Controller 69

Figure 4.13: Use of a Static PNN to Predict State Variables of a Synchronous
Generator at a Future Tim e .. 72

Figure 4.14: Use of Multiple SPNNs to Predict the State Variables at Future
T im es 73

Figure 4.15: Polynomial Neural Network Model of Dynamic Response of
Hydro-Turbine Generator Connected to Infinite Bus During Step
Increase of Input Torque ... 79

Figure 4.16: Polynomial Neural Network Model of Dynamic Response of
Hydro-Turbine Generator Connected to Infinite Bus During
Short Circuit Fault at Terminals .. 80

Figure 4.17: Linear Dynamic Polynomial Neural Network Used to Model
Each State V ariable ... 81

Figure 4.18: "Truth" or Full Differential Equation Model Response to a Step n
in Input Torque of 23.5 Million (0.85 Rated) .. 83

Figure 4.19: Reduced Order (Stator Electric Transients are Neglected)
Differential Equation Model Response to a Step in Input Torque
of 23.5 M illion (0.85 Rated) .. 84

Figure 4.20: "Estimate" or DPNN Synchronous Machine Emulator Response
to a Step in Input Torque of 23.5 Million (0.85 Rated) 85

Figure 4.21: Actual and Estimated Stable Responses of 5(t) to a Step in Input •
Torque, Followed by Introduction of a Three-Phase Short-Circuit
Fault at 5 Sec., which Lasts 0.465 Sec .. 88

Figure 4.22: Actual and Estimated Unstable Responses of d(t) to a Step in
Input Torque, Followed by Introduction of a 3-Phase Short-
Circuit Fault at 5 Sec., which Lasts 0.467 Sec .. 89

Figure 4.23: Actual and Estimated Unstable Responses of 8(t) to a Step in
Input Torque, Followed by Introduction of a 3-Phase Short- I
Circuit Fault at 5 Sec., which Lasts 0.467 Sec. (Same as Fig. 4.22,
but Scale has been Expanded) .. 90

vi m

List of Tables

Table 2.1: Some Basis Functions Commonly Used for Function Estimation 10

Table 4.1: Mean Square Error of Plant Output Prediction Using Static PNN 59

Table 4.2: Mean Square Error of Plant Output Prediction Using Dynamic
P N N .. 64

Table 4.3: Nonlinear Coupled Flux Linkage Equations for Synchronous
M ach ine .. 75

Table 4.4: Current Equations for Synchronous Machine 76

Table 4.5: Definitions and Other Relationships ... 77

Table 4.6: Synchronous Machine (Hydro-Turbine Generator) Parameters
U sed in Sim ulations ... 78

vii

1. INTRODUCTION AND SUMMARY

Artificial neural networks (ANNs), although envisioned in fictional
literature long before, became a subject of serious scientific study in the early 1940s
with the publicaion by McCulloch and Pitts of their work to describe the
functioning of neurons and simple aggregates of neurons in terms of mathematical
logic [McCulloch and Pitts, 1943]. t The McCulloch-Pitts formal neuron was a
mathematical construct particularly suitable for descriptions and analyses of
feedforward networks of neurons, that is, networks in which the propagation of
information (encoded as neuronal impulses) was unidirectional from input to
output. Emphasis was thus placed from the beginning of ANN research on the type
of networks that produce static, i.e., feedforward, transformations. A static ANN
transformation is not explicitly dependent on its own prior outputs, but is subject, of
course, to on-going changes brought about by learning processes. As research in
neurodynamics proceeded, the concept of reverberatory information flows received
attention [Hebb, 1949]. Reverbe.atory neuronal networks have ii.ternal connections
that provide feedback pathways conducting information from the outputs of specific
neurons to the inputs of the same or other neurons stimulated at the same or
earlier stages in a reverberatory sequence of neuronal firings. It was recognized by
Hebb and others that reverberatory loops could provide a basis for temporary
retention of information within a neural network; could exhibit, in general, coupled
oscillatory modes of learned responses evoked by input patterns; and could
organize, adapt, and maintain complex, learned psychomotor functions in living
organisms.

Despite the appeal of reverberatory artificial neural networks as a possible
means for the control of complex engineering systems, the ANN research
community has grappled for 50 years with the technical issues that surround
synthesis and use of static neural networks. This concentration on static
transformations has been prudent, partly because it was several decades before
crucial interdisciplinary connections would be completed between the rigorous
theory and algorithms of statistical modeling and the developing field of artificial
neural networks [see A.R. Barron and R.L. Barron, 1988]. Many fruitful engineering
applications of ANNs had been realized by 1980 [R.L. Barron, et al., 19841, but these
early applications generally proceeded more from intuition than solid theoretical
foundations. Since approximately 1980, statistical learning theory has found its way
into the ANN domain, and in this fertile territory has taken strong root, as
discussed in Section 2 of this report. The advent of statistical learning theory within
the ANN community is now having a profound ir.fluence on development of
procedures for training and using artificial neural networks.

t References cited in body of this report appear on pages 95-101.

1

I

In the opinion of the authors, a major area of further advances during the
1990s will be that of reverberatory artificial neural networks, used particularly to
process time-series data (signals) and to control complex, high-order, multivariable
processes. The now-perceived advantages of reverberatory ANNs, here called
dynamic ANNs, but often referred to .n the literature as recurrent ANNs, are:

1. Judging from the experience obtained with dynamic networks in this
project, fewer degrees of freedom are required internal to the ANN for a
given modeling/prediction/control application using dynamic networks
than when using static networks. This translates into greater robustness,
reduced network training time, reduced size of the training database, and
reduced on-line computational burden. I

2. The analyst can be relieved of many design decisions concerning the
optimum strategies for sampling and holding prior measures of the states
of controlled processes, because dynamic ANNs can be synthesized via
algoritu ns that automatically learn what information is to be retained and
for how long.

3. Dynamic network synthesis algorithms can automatically blend data from
multiple time series, using just the appropriate phase and magnitude and
the optimum linear and nonlinear interaction terms. I

4. Dynamic networks can compute a time-series estimate (output) with oT
without time-varying inputs. Dynamic networls can thus compute
predictions that are not limited to a small number of discrete forecast
horizons. Viewed more generally, estimated time series can be computed
with or without time-varying input patterns.

5. Dynamic networks can readily constitute infinite impulse response (IIR)
filters - not available with static (purely feedforward) ANNs - in
addition to providing finite impulse response (FIR) solutions. This has I
important consequences for signal processing and coILrol.

6. Information-theoretic modeling criteria and network synthesis procedures
developed for static ANN syntheses have applicability (with suitable
extensions) to dynamic networks. The ANN lessons of the first 50 years
therefore have carry-over to dynamic ANNs.

7. Dynamic networks can provide more general solutions that embrace those
obtained via static networks and reduce, automatically, to static networks
where such are optimal.

8. As with static networks, off-line learning and on-line adaptation and Ulearning are realizable.

Among the first work in dynamic networks was that of Rumelhart, Hinton,
and Williams, who described recurrent (dynamic) backpropagation (BP) networkn
[19861. A generalization of the recurrent BP netwc k is presented by Hecht-Nielsen

I
I I Ir I2

1
I

[1989]. A recent paper by Kuan and Hornik [1992] describes some of the issuesIconcerning recurrent BP networks as follows:

"A fundamental difference between feedforward and recurrent networks is the presence
of internal feedbacks Rt, which are also a function of network connection weights 0. In a
recurrent network, the standard BP type of algorithms are not valid because they fail
to take into account the parameter dependence of Rt ... Rt is a very complex function of
0. This motivates the study of the recurrent BP algorithm (Kuan, Hornik, and WhiteI(1990)).

"The recurrent BP algorithm shares all the advantages and di3advantages of
the standard BP algorithm; in particular, it converges rather slowly. By adding a
Newton direction to the recurrent BP algorithm we can obtain a computationally
efficient algorithm."

Other investigators have (in static and dynamic network synthesis
algorithms) optimized the entire set of coefficients in a pre-structured network. The
algorithms they have employed have, for the most part, been inherently unimodal
(subject to trapping on local minima). In the present formulation, the authors have
sought to provide computationally efficient structure learning and weight
optimization synthesis algorithms for dynamic networks, including capabilities for
global optimization of the weights. We have also endeavored to gain preliminary
understanding of the capabilities and limitations of the new algorithms, largely
through investigation of several applications arising in complex prediction and
control problems. It is doubtful that the algorithms presented are equally suitable
for all applications, but they have shown themselves to be highly effective in the
cases considered.

ISection 2 of this report presents a perspective on ANN synthesis based upon
the statistical estimation of functions. This thinking is relevant to static and
dynamic networks and is a product of the research by A.R. Barron [see references].
Section 3 introduces the computer algorithms Dyn3 and DynNet, developed in this
project for the purpose of dynamic ANN syntheses. Application to time-series
predictions for an advanced turbopropulsion combustion process and for a
synchronous generator are detailed in Section 4. Algorithms for static ANN
estimation and classification function learning (refined during this project) are
described in Appendix A, while Appendix B outlines a numerical optimization
algorithm that has been useful in some of the syntheses of dynamic networks.
Appendix C summarizes results of a brief study of the use of ANNs for prediction of
the behavior of a deterministic chaotic process. Appendix D presents an application
study of the synthesis and simulated performance of a dynamic ANN studied for
possible on-line, real-time implementation of an optimal, two-point boundary-
value guidance law for a tactical air-to-air missile. It is shown that the dynamic
ANN guidance law provides substantial improvements relative to a static ANN
guidance law for this application in terms of simplicity, robustness, noise sensitivity,
and guidance accuracy. Appendix E provides further details of the combustion-
process time-series prediction application discussed in Section 4, drawing analogies
to classical Wiener-Volterra filter design, showing how ANN methods provide a

3

I

valuable generalization of the classical methods and presenting comparative I
numerical results for dynamic and static ANNs. The dynamic artificial neural
network emerges as clearly superior to the static embodiment, which itself offers
compelling benefits vis-a-vis classical solutions.

Section 5 presents conclusions and recommendations, and Section 6 provides
the list of references for this report.

I
I
I
I
i
I
I
I
I
I
I
I
I
I

4 I

2. FUNCTION ESTIMATION PRINCIPLES

2.1 Introduction

To construct an effective neural network for any purpose, particularly
including active control, one must make several decisions regarding the
fundamental structure of the network and the algorithms that will be used for
network generation. To make these decisions properly it is helpful to understand
network structure and network training in the broader context of generalized
function estimation. This section outlines important principles for both static and
dynamic function estimation that underlie all artificial neural networks (ANNs),
including the dynamic polynomial neural networks (DPNNs) covered in Section 3.

2.2 Network Structure

An artificial neural network is typically composed of nodal elements that
perform a transformation between input and output data vectors. Sets of nodal
elements are connected in a specific way to comprise layers; the layers in turn are
connected to create the entire network. Figure 2.1 shows the structural heirarchy:

Network

Interconnections Layers

Interconnections Elements

Tapped Delay Bank SISO Transformation

MISO Series Expansion

Figure 2.1: Artificial Neural Network Structural Heirarchy

2.2.1 Network Inputs and Outputs

On the highest level, an artificial neural network is a transformation which,
when interrogated, produces an output vector, , in response to a given input
vector, 2. In the case of static networks, the output vector is a single-point
transformation of the input data:

= f i,f) 2:1

5

I
i

where 9 is the set of network parameters. Dynamic networks contain internal
feedbacks and time delays, and produce a transformation of the form

'- = g I x , -, i-m' si-' 1 " - -ni 1] 2:2

Neural networks are typically imbedded in systems and are trained to produce I
a desired effect on the system response. We define the training database as:

(_, Y) ; i = 1, 2,3,..., N 2:3

where N is the number of data vectors in the training database and x. and Y, are the
measured inputs and system responses for the ith observation.

Often the network output is written as instead of i; however, this invokes
the interpretation that the network output is an estimate of the system response I
recorded in the training database. For modeling and inverse modeling such is

certainly the case, but there are numerous instances in which the network output is
not intended to be the best estimate of the database response vector.

In certain control applications, for example, it is not the network output, but a
transformation of the network output, that is fitted to the response values recorded I
in the training database. Fig. 2.2 illustrates a multiple-input, multiple-output
(MIMO) network controller. In this figure the network is adapted on-line because
the network itself is part of the overall input-output transfer function. The desired I
network response is the one which, when passed as input into the plant, produces
over time the minimum absolute error between plant output and the reference
signal.

Reference
signal, Y~

+ Neural Network Plant

Figure 2.2: MIMO Network Controller i

In some network applications, the desired network output is neither the best i
estimate of the database response values nor a best control signal, but is passed
through an additional transformation. In many classification tasks, for instance, the
training database response vector, yi, is assigned an integer scalar representing the I
class of the vector. The desired network output, however, is a vector of estimated
class probabilities (or log-odds) given that the input state is xi. This output vector
may then be fed into appropriate decision logic to determine the signal classification
(Fig. 2.3).

6

... 0.

4..

CJ

2 0
-4q

C14-

(U Q)

-8-
N ~ u- +1

_ _ _ _ _ nn_ _ _ _ _) a) - -

00 +-li

4.41

U)~- z

(n cU
14~

~.44 64z

I
I

2.2.2 Element Definitions

Most artificial neural networks are comprised of fundamental building blocks
called nodes, elements, or nodal elements; a generalized nodal element is shown in
Fig. 2.4.

The element may be built upon an algebraic or other series expansion,
sometimes called the core transformation. This expansion is often composed with a I
fixed post-transformation function, h(.), that may be linear or nonlinear. In
addition, the inputs to a nodal element are often passed through shift registers or
delay banks to allow the series expansion to have access to prior input values; this I
incorporation of memory via shift registers is essential in dynamic networks that
deal with time-series data.

The series expansion of Fig. 2.4 is of the form

i I
00 + Y oj 0 2:4

j=1 I
where 0 is the vector of element coefficients, J is the total number of non-constant
terms in the expansion, and] is a vector of integers. The series expansion within a
neural network element has the same form as traditional series expansion
techniques; however, with network function estimation, it is desirable that the total
number of terms in any given element be kept as small as possible. This point will
be elaborated on shortly.

The inclusion of k , sometimes called the set of indices or multi-indices, in Eq.
2:4 allows the series expansion to handle both univariate and multivariate cases. For

the multivariate case, each 4) is a product of functions of scalars. 4 is usually

taken to be a vector of integers with each element of k. corresponding to one of the I
variables in the x vector. Using this notation, the jth term in the series expansion
may be written as:

0' (X) = (D (kjlXl) o (D (kj2,x 2) o o 4 (kjEyXD) 2:5

where D is the total number of inputs to the series expansion. I
The notation introduced above (and thus the nodal element) is sufficiently

general to implement a variety of basis functions. Table 2.1 gives examples of how

the function 4' (kjd,X) may be chosen to implement some basis functions commonly

used in function estimation (note that in Table 2.1 the subscripts have been dropped U
from k where the basis function does not depend on them).

83

I _ _ _ iI

I I
I I

I 9

l
I

Table 2.1: Some Basis Functions Commonly Used for Function
Estimation

polynomial '?(k,x) = xk 2:6

Ispline 4D(kjd,x) = f Xk)r if k < r 2:7

orthnoral wvelt r 2 k / ~1 (2k - ~d) if k> =03

trigonometric 4b(k,x) =sin(2 x) ifkis odd 2:9
cos(2 C k x if k is even2L) I

For the polynomial basis function (Eq. 2:6), the vector is used to determine 3
the powers to which the input variables are raised in the jth term of the expansion.
The same is true for the spline basis function (Eq. 2:7); however, the degree of the
function is never allowed to exceed r; thus r = 3 results in the commonly used cubic
spline.

Note that in both the spline and the wavelet cases an additional set of multi- I
indices, ajd' must be specified. The parameter ajd in Eq. 2:7 is sometimes called the
"knot" and is the value about which the approximation takes place. In some cases,

such as uniformly spaced knots, the knot set can be obtained automatically,eliminating the need to pre-specify the additional set of multi-indices.

In the orthonormal wavelet basis function, I'(.) is termed the "mother
wavelet" and must satisfy a number of specific conditions, including that it be
continuous, integrate to zero, and be non-zero in a very specific limited range
[Daubechies, 1992]. One such function is the Littlewood-Paley basis function:

I
10

sin21cx - sinnx'l'(x) = 2:10
'Cx

In the trigonometric basis function (Eq. 2:9), L represents the fundamental period of
the expansion and depends on the sampling rate.

From Eqs 2:4 - 2:9 it can be seen that the core expansion may be fully specified

via a univariate basis function (of the form in Table 2.1) and a J x D matrix K, where
each row of K is the vector of integers 4 as defined above. We will illustrate this
with two examples:

Example 1: Consider the "Full Double" element of Fig. 2.5. Because this
element has no input delays and no post-transformation h(-), it is completely
specified by the series expansion of Eq. 2:11:

2 Ipu FllDouble

02 3
X7

x1

(Exponentiation to the power n

EJ Represents a cross product

E] Represents multiplication by a constant

Figure 2.5: Example of a "Full Double" Network Element

11

/

I

z = 0 0 + O1 x1 + 0 2X2 + 0 3xi 2 0 4 X2 2 + 5 xlx 2 I

+ 06x1
3 + 67X2

3 + 08x1
2x2 + 09x 1x2

2 2:11

If we choose a polynomial basis function (Eq. 2:6), then the J x D matrix K
corresponding to the expansion in Eq. 2:11 is

10 I
0 1
20
0 2

K= 1 1 2:12- 3 0I3 0

0 3
2 1
12 I

Note that because the basis functions of Table 2:1 were defined so that the value of

any basis function at k = 0 is unity, the 00 coefficient may be removed from Eq. 2:4 if
an additional row of zeroes is added to the K matrix.

Example 2: Consider the trigonometric series expansion

00 + 01 sin (27---x) + 0 2 sin 2-xcos 2x2 2:13

If we choose a trigonometric basis function (Eq. 2:9), then the J x D matrix K that I
will yield the series in Eq. 2:13 is

K = 12:14

The first row of this K matrix contains one non-zero index, 5. Since this index is

odd, it corresponds to a sin (.) term with an internal coefficient of (k + 1)/2 (or 3).
The second row contains two non-zero indices, 10 and 3, corresponding to cos (-) and
sin (-) terms with coefficients of 5 and 2, respectively. Once again, the constant term
in the expansion could have been represented implicitly by a row of zeroes in the K
matrix rather than explicitly as in Eq. 2:4.

While the generalized nodal element is capable of implementing many I
commonly used series-expansion basis functions, neural network function

I
12

estimation is fundamentally different from traditional series and nonparametric
estimation techniques in the following ways:

" Each network element implements only a limited subset of the terms that
would make up a complete series expansion; thus element complexity is
kept low.

" A high level of connectivitity between network elements allows a set of
relatively simple network elements to be combined so that they can
implement complex transformations; thus the network connections do a
great deal of the "work" involved in the estimation problem.

* As the number of inputs to the function increases, the bound on the mean
squared error for network estimation can be shown to be more favorable
than that of traditional function estimation techniques [A.R. Barron, 1991].

There are four factors, discussed below, that determine the number of
coefficients (i.e., complexity) that will be needed in a given series expansion; by
limiting one or more of these factors, the complexity of the nodal element may be
kept low.

Maximum Interaction Order: In multivariate function estimation, the
interaction order corresponds to the maximum number of different input variables
that may appear at the same time in a given term. Thus, in Eq. 2:13 above the
interaction order is two because both x, and x2 appear in the last term of the series.
High numbers of interactions result in a combinatorial explosion in the number of
terms needed for the complete series expansion, so a limit on the total number of
interactions is one of the most important restrictions that can be placed on the nodal
element series expansion. A cap on the maximum interaction order can be thought
of as limiting the total number of non-zero elements in each k. vector.

Maximum Degree: For polynomial basis functions, the degree of a given
term corresponds to the sum of the powers of the variables in the term. The degree
of the basis function is the maximum of the degrees of its terms. Thus, Eq. 2:12
represents a third-degree series expansion. For any basis function, a limitation on
the maximum degree can be thought of as limiting the sum of the elements in each

vector.

Number of Inputs: Limiting the number of inputs to a series expansion can
also significantly reduce the number of terms. While the number of inputs to the
network is largely determined by the application and not the analyst, it is possible to
limit the number of inputs to individual elements internal to the network.

Expansion Density: Even after the interconnections, degree, and inputs for a
given series expansion are limited, one may choose to remove some terms to obtain
a sparse or low density expansion. Eq. 2:13 and the corresponding K matrix in Eq.
2:14 exemplify a sparse expansion. While this series has an interaction order of two,

13

i

a maximum degree of 15, and two inputs, there exist other terms which meet the I
interaction order and degree constraints and yet are not included in the series
expansion. Some specific examples of sparse polynomial expansions are given in
Section 3.3.1.

Because it is desirable to keep the total number of network coefficients small,
more emphasis is placed on determining an appropriate, efficient network structure,
and less on problems associated with extremely high dimensional nonlinear
optimization. In general, this approach proves to be more efficient in terms of
computing resources and also leads to more robust models that do not have an
excessive number of internal degrees of freedom.

The linear or nonlinear fixed post-transformation, h(.), of Fig. 2.3 allows the i
element specification to be general enough to encompass most neural network
nodal elements currently in use. The transformation may be used to introduce
helpful nonlinearities into the network, especially when there are few or no
nonlinearities in the core transformation. Additionally, the transformation may be
used to "clip" the output of the core transformation, which often improves the
stability of the network (in the bounded-input, bounded-output sense). This may be
especially important when a polynomial core transformation is evaluated near or
outside the boundaries of its training region. Fig. 2.6 shows the role of the post-
transformation in the popular sigmoidal element.

------------------------------- gmoid-a-E-lement I

Figure 2.6 Example of a "Sigmoidal" Network Element

The element shown in Fig. 2.6 also has no time delays and implements ai
series expansion of the form i

11

n h
e0 ~~~1 +e ex 2

FloiThe me sho inied alsoan thime elas eanimpent anb

represented by choosing the polynomial basis function of Eq. 2:6 and letting K be a D

14l

x D identity matrix. Because K contains only first-order interactions and has a
maximum power of one, the number of terms in the series expansion is kept low.

The post-transformation, h(.), of Fig. 2.6 is a sigmoidal transformation and
has the formula shown in the figure. Due to the nonlinear post-transformation, the
sigmoidal nodal element is nonlinear in its paraweters.

Another use for the post-transformation, h(.), is to allow the generalized
nodal element to implement other types of function approximations that are not
simple series expansions. Suppose, for instance, one wants a trigonometric function
of the form

z = sin(olx1 + e2x 2 + ... + e0x,) 2:16

In this case, the series expansion is a first-order polynomial expansion, while the
post-transformation is the sin(-) function.

2.2.3 Layer DefinitiQn

A layer is a set of elements whose inputs are selected from the same set of
candidates. It is important to define a layer as a distinct unit within the network;
the reasons for this are:

First, when determining network structure, it is often convenient to build a
unit of network structure and then freeze it while building other units of the
structure. The network layer is this unit of structure. This is analogous to
constructing a building one floor at a time; each subsequent floor is built upon the
floors below it, and construction on a new floor cannot begin until a sufficient
portion of the lower floors has been constructed.

Second, elements on a given layer are often trained to "work together" as a
group to produce the desired network response (Section 2.3.3).

In addition to the internal layers, a network will often contain two special-
purpose layers. The first receives inputs, normalizes them, and passes the
normalized values to subsequent layers. Often if the inputs are normalized, the
network is trained on normalized outputs as well. When this is the case, a second
special-purpose layer is required to unitize (or de-normalize) the network outputs.
By normalizing and unitizing, each network input is allowed to contribute equally
to the solution of the problem, and the magnitudes of the network coefficients
become a more accurate reflection of the relative importance of a given term.

2.2.4 Network Interconnections

Fig. 2.7 shows the various types of network interconnections.

15

I
I

vector of network
inputs

,

inu.. Layer 1

---- ----------------
interconnections Element 1,1 t- internal network
internal to the feedforward
layer -- . Element L2 interconnections

passed to
subsequent

layers

internal network Elmn susqun lyr

feedback ...-
interconnection

t

I

Figure 2.7: Network Interconnections

Intra-layer connections consist of making the inputs to each layer available to
every element in the layer. The individual elements are then free to choose which
subsets of the available inputs to use. Element outputs are then passed along as
layer outputs; the layer outputs may be described by a vector containing scalar values I
corresponding to the element outputs. Network inputs are available as element
inputs at successive layers. I

It is important to note that in this paradigm, we do not allow feedback
connections internal to the layer or elements. This restriction allows the same layer
definition to serve for both feedforward and feedback networks. Connections

between layers, however, may be passed forward as inputs to subsequent layers
(feedforward networks) or may be passed back as inputs into the given layer and/or
previous layers (feedback networks). Thus, for the generalized network structure

outlined in Section 2.2, the only differences between dynamic and static networks
are the types of inter-layer interconnections illowed.

2.3 Network Training 3
Often networks are trained using a gradient-based search technique to find the

coefficients of a pre-structured network; tl-e popular backpropagation algorithm
[Rumelhart, Hinton, Williams, 1986] is an example of this type of training, where

the specific optimization algorithm is a form of least mean squares (LMS). The
recommended approach, however, is to allow for structural variations by including
in the training algorithm(s) methods for determining a network structure suitable
for the task at hand. Thus, building the network structure and optimizing

16

I coefficients are intertwined processes used to create more robust networks with less

i training effort and time.

2.3.1 The Loss Function

I For a given network structure the optimal coefficients are those which
minimize the sum of a loss function evaluated at every observation in a training

i database:

min d 2:17

I where:

N is the number of observations in the training database

Iy, is the ith output vector in the training database

5, is the ith output vector of the network; 5i = f(xi,a) for feedforward networks
(Eq 2:1)

d(.) is the loss or distortion function.

Because the goal of the network training algorithm is to minimize the output
error as quantified by the loss function, it is helpful if the loss function is a convex,
twice-differentiable function with respect to the coordinates of 5j. By imposing these
constraints on the loss function, one guarantees that, if the function being fitted is
linear in its parameters, the fitting algorithm will be able to find the set of
coefficients that globally minimizes the network error. Even if the network
function is nonlinear in the parameters, a convex, twice-differentiable loss function
will still result in the best performance possible for the optimization algorithm.

Depending on the nature of the application, a variety of loss functions may be
used effectively. The squared-error loss function is by far the most commonly used
and can be expressed as

d(Iii) = I y - 2 2:18

In this case, the vector norm 1. 12 is defined as the sum of the squares of the
differences between the coordinates of yi and si. This loss function is most suited to
create networks whose outputs estimate the data in the training database as closely
as possible.

One problem with the squared-error loss function is that data outliers tend
to have a greater than desirable impact on the coefficient optimization. A number

17

I

of robust loss functions have been suggested which reduce or nullify the effect of i
outlying data. One such function is Huber's loss function

2 if 1.51 2 <A n
=2 i y_.2 2:192A1 yi -si -A if i--I IA

where A is the distance at which outliers begin to have less effect. When
I y-, - a, I > A, d(-) becomes a 1-norm. Thus, this loss function has the advantages of a
1-norm; however, by using a 2-norm near the origin, the function is everywhere
continuous in the first and second derivatives, which is not the case with a 1-norm
loss function. Note that in Eq. 2:19 it may be desirable to shape each coordinate of
the output norms differently by using an N-dimensional vector of values for A.

Optimization of Eq. 2:17 for the squared-error distortion function of Eq. 2:18
corresponds to the maximum likelihood rule in the case of a Gaussian probability I
model for the distribution of the errors. However, for multi-class classification
problems with categorical output variables, a multinomial probability model in
regular exponential form is more suitable than the Gaussian model. In this case, the I
network functions should be used to model the log-odds associated with the
conditional probability of each class given the observed inputs. In this setting, the
maximum likelihood rule corresponds to the choice of the logistic loss function,C u

d(yi'Si) = -. yi oa- + log le Si'k 2:20
(k=1

where C is the number of outputs (or classes); Si,k is the kth element of the 5-. vector; m
and yi is a vector with the coordinate of the observed class equal to one, and all other
coordinates equal to zero (i.e., the observed conditional probabilities given xi). In

this context, the likelihood associated with observation i is

P(= IX) e e 2:21

Y esi,k

k=1

and Eq. 2:20 expresses the minus log-likelihood d(.) = - log p(yi I x). In this way, it is
possible to compute estimates of the probability that an observation is a member of
class k', given that the input state is X:

eSi.k
p(k' Ix) = C 2:22

Xe 3i'k ik=1

18l

Likelihood-based loss functions, such as the logistic loss function described
above, can also be helpful for density estimation and clustering of input data. For
instance, the loss function may take the form

d(si) = -log si 2:23

where si = f(_ , R) and f(-) is the estimated probability density function. In that case,
the network output would need to satisfy

ff(.,-)dx 1 2:24

and

f(x,Q) > 0 2:25

If the network function output, f(x, a_), does not satisfy the integrability
requirement of Eq. 2:24, this condition can be reflected in the choice of the loss
function by setting it !qual to

- log si + log f f(x, 0)dx 2:26

where the second term plays the role of normalizing the network output.

If the network does not satisfy the positivity requirement of 2:25, one can use
the network function to model the log-density, and take the density function to be

e f(Ai, O)
= 2:27

-ef(z. °)dx

and the minus log-likelihood to be

- log (p(x,,-)) =-si + log (f ef(& 9dx 2:28

where s i = f(. i, 0).

A roughness penalty may be added to any of the above loss functions to
"smooth" the network output and impart an improved ability to interpolate
between unseen data points. The addition of a roughness penalty can also improve
network input-output stability, such that small variations in network input produce
small variations in network output over ' entire range of operating conditions.
Any of the following, for example, may be used as a roughness penalty:

* Sum of squares of coefficient magnitudes

19

I

" Sum of squares of network gradients with respect to the inputs i
" Minus the log of the prior density function of the network parameters

2.3.2 Model Selection Criterion

A.R. Barron [1991] has given general conditions such that the minimum i
mean integrated squared error for a sigmoidal neural network with one layer of
sigmoidal nonlinearities will be bounded by

+ O(ndlogN) 2:290 1)

where O() represents "order of ()," n is the number of elements, d is the
dimensionality (number of coefficients per node), and N is the sample size (number
of training exemplars). The first term in Eq. 2:29 bounds the approximation error,
which decreases as the network size increases. The second term in Eq. 2:29 bounds
the estimation error, which represents the error that will be encountered on unseen
data due to overfitting of the training database; it is caused by the error in estimating
the coefficients. Estimation error, unlike approximation error, increases as network
size increases.

Pre-structured networks, because they often have excessive internal degrees of
freedom, are prone to overfit training data, resulting in poor performance on
unseen data. Additionally, because of a large number of network coefficients,
optimization of pre-structured networks tends to be a slow and computationally
intensive process. Without algorithms that learn the structure, the analyst often
must resort to guesswork or trial and error if the network complexity is to be
reduced.

Improvements in network performance on unseen data can be made if one
incorporates into the optimization algorithm modeling criteria that allow the
network structure to grow to a just-sufficient level of complexity. While this
technique requires additional effort to search for an optimal structure, the overall
network generation time is, in general, greatly reduced due to the reduction in the
number of coefficients.

Two decades of research have gone into this topic. In Ukraine, Ivakhnenko
[1968] introduced the Group Method of Data Handling (GMDH). With GMDH, the
loss function is squared-error, and overfitting is kept under control by means of
cross-validation testing that employs independent subsets (groups) of the data base
for fitting and selection. GMDH is a satisfactory approach when ample data are
available. Usually, however, the quantity and variety of the data are limited by
operational considerations, and it is desirable to use all of the data in the fitting
process. In Japan, Akaike [1972] introduced an information theoretic criterion that

2oI

uses all of the data and incorporates a penalty term for overfit control. Akaike's
criterion is one of several that take the form

1 N K
d(Y-i,) + C - 2:30

i=1

where K in this context is the number of non-zero coefficients in the model, N is the
number of data vectors in the data base, and C is a constant. Since the second term
does not depend on the network coefficient values, model selection criteria of the
form shown in Eq. 2:30 are often optimized one term at a time.

Akaike's information criterion (AIC) and later criteria introduced by Schwarz
[1977] and Rissanen [1983] require the loss functions to take the form of a minus log-
likelihood. When the loss function takes this form, the AIC is given by Eq. 2:30 with
C = 1, and the simplest forms of Schwarz's BIC and Rissanen's minimum

1
description length (MDL) criteria are given by Eq. 2:30 with C = 1 log N. Note that

these criteria are applicable to both the squared-error loss for curve estimation with
a Gaussian error model, and the logistic loss for probability estimation.

The AIC, BIC, and MDL criteria depend explicitly on an assumed probability
model to yield the likelihood expressions. However, other criteria of the form of Eq.
2:30 can be justified by the principle of predicted squared error (PSE) [A.R. Barron
1984, Mallows, 1972] or the principle of complexity regularization [A.R. Barron,
1990].

To use the AIC or MDL criteria in the squared-error case, the loss function is
recast in the form of a minus log-likelihood for a Gaussian model which may be
written for the single-input case as

d(yi,si) I y1-s 1 2 + 1 log 21 2 2:31
2a 2 g2

21

I
I

where o 2 is a constant that may be regarded as the variance of the error in the
Gaussian model.1 The constant a 2 could be replaced with its maximum likelihood
estimate I

1N

I I Y- Si12 2:32

which leads to a criterion of the form
IK I

log (&2) + C K 2:33
1 I

with C = 1 or C = 1 log N for the AIC and MDL, respectively. A different &2 is

obtained for each candidate network model. However, choices for 72 which depend
on the candidate model have a serious drawback: "minimization" can occur when
K is sufficiently large that the distortion function equals zero, which we know to be
a specious result (as overfitting is then extremely likely). Furthermore, these criteria
depend explicitly on the assumed family of the error distribution.

As an alternative, it is better to use a prior estimate, o2, of the model error
variance that does not depend on the candidate models. A.R. Barron showed [1986]
that even when a prior estimate (72 is not extremely accurate, the criterion can still
prove useful.2 By inserting Eq. 2:31 into the criterion of Eq. 2:30, multiplying by 2a3

1 Eq. 2:31 may be extended for multiple outputs as follows: I

= isi ,2 +1 log 2na

j=1 U
where 2 is a constant that may be regarded as the variance of the error of output j.weeaj

1

2 If no value of a2 is known a priori, one can use, for instance, the nearest-neighbor estimate of the

function to obtain a good value for a12 . The nearest-neighbor approximation consists of assuming that
the output for a given data vector is to be estimated using the output value of the data vector which is

closest to it in the data space; a2 may then be set to be the variance of these estimates. After
modeling, the predicted error of the model can be checked to verify that it is less than or equal to ap.

22 I

II

2c 2 and ignoring a constant, it can be seen that minimizing Eq. 2:30 is the same as
.P.

minimizing

1 N K

N " I Yi-Si2 + a- 2:34

For C = 1, this is the PSE criterion. A.R. Barron [1984] shows that this criterion,
unlike the general AIC, is appropriate even when the error distributions are non-

1
Gaussian. For C = log N, the terms in Eq. 2:32 become the leading terms of the

complexity regularization criterion derived by A.R. Barron [1990].

For the classification or conditional-probability estimation problem, one may
use the AIC or MDL criterion of Eq. 2:30 with the logistic-loss function. Since it
already has been shown that the logistic-loss function takes the form of a minus log-
likelihood, no modification to Eq. 2:30 is required, and the task becomes one of
minimizing

1 N K
K d(y + C 2:35

I i=1

where the distortion function, d(.), in Eq. 2:33, is the logistic-loss function of Eq. 2:20.

By minimizing Eqs. 2:32 and 2:33 instead of their predecessors Eqs. 2:18 and
2:20, the network complexity can be appropriately penalized so that the it does not
overfit. One may follow the same steps to modify a variety of objective functions.

The CK/N term in the model selection criterion is called the complexity
penalty and can be thought of as an additional term added to the loss function. The
complexity penalty allows the loss function to account for both estimation error and
approximation error. By adding the roughness penalty to the loss function

Loss = distortion function + complexity penalty + roughness penalty 2:36

one has all that is needed to create a robust objective function that not only takes
into account estimation and approximation error, but also function smoothness and
stability.

2.3.3 Optimization Strategy

Having defined the structural building blocks for a generic artificial neural
network and an appropriate objective function, we next turn to consideration of an
efficient search strategy that will find the network structure and optimize the
coefficients of that structure.

23

I
I

The optimization strategy proposed here is distinctive in two ways. First,
only small subsets of network coefficients are optimized at a given time, thus
reducing the dimensionality of the search space and improving the performance of
the search algorithm. In most cases, it is sufficient to optimize only the coefficients
of a single element while holding all other elements fixed. Ivakhnenko [1968] was
the first to propose this type of network construction. In his scheme, the coefficients
of each element are optimized in such a way that each element attempts to solve the
entire input-output mapping problem.

While Ivakhnenko's method is powerful, it can be improved upon. A
second major distinction of the proposed optimization strategy consists of training
the elements on a given layer so that they work in linear combination with other
elements on that layer to minimize the objective function. This is accomplished
using a technique inspired by the projection pursuit algorithm of Friedman et al.

[1974, 1981, 1984]. In this strategy, an additional set of "dummy" coefficients, 01 "'" Pk
is used; these dummy coefficients multiply the outputs of the n elements on a given
layer (Fig. 2.8):

Layerb I

Elemen ,

I
lElemetL2-

Element L'n Dn

Figure 2.8: Optimization Strategy

The coefficients of the node under consideration, along with the additional
dummy coefficients, may be optimized together so that the weighted sum of
element outputs minimizes the objective function. This has the effect of training
each new element to work well in combination with the existing elements of a
given layer. Additional nodes are added to a layer only as long as their additional I
complexity is justified.

Additionally, coefficients within the new elements may be built up or carved I
away using an objective function that contains a complexity penalty; the complexity
penalty allows only terms which contribute significantly to network performance to
survive.

Entire layers may be optimized following a strategy inspired by the backfitting
method of Breiman and Friedman [19851. In this strategy, each coefficient subset is

24 U

improved by iterating the search algorithm a few steps while holding the rest of the
coefficients fixed. This method is then repeated for another subset of network
coefficients, etc. In our general paradigm, the nodal elements become the logical
choice for the coefficient subsets to be optimized, and a layer may be optimized by
successively recursing through each nodal element, iterating the optimization
algorithm a few times for each element. Breiman and Friedman showed that under
appropriate conditions this method will yield the same coefficient values as are
obtained via a successful global optimization of the same structure. Practical
implementation of the backfitting strategy has an advantage in that only a small set
of linear equations needs to be solved at any given time.

One example of a way in which backfitting may be applied can be illustrated
using a network as defined in Fig. 2:8. Once the structure of the layer has been
determined, the coefficients of element L,1 and the dummy coefficients, D., would be
adjusted using one iteration of the search routine (see Section 2.3.4). Next the
coefficients of element L,2 and the a are adjusted using one iteration of the search
routine. This process continues n times until the coefficients of element L,n have
been adjusted. At this point, the process begins again with element L,1. The
optimization routine would continue until the optimization no longer improves
performance significantly.

Another way backfitting can be used is during the actual search for network
structure. Elements may be backfitted each time a new element is added, and the
new element can be scored based on its performance in conjunction with the
backfitted prior elements. In general, backfitting will increase training time, but it is
a technique which can be used as often or seldom as desired. Even in small
amounts, backfitting can be a highly efficient way of optimizing larger sets of
coefficients so that they work well together.

Once the structure of a given layer is determined, subsequent layers have the

choice of combining the layer outputs linearly using the fJ coefficients chosen above,
or they may go on and recombine the outputs in more complex ways if the
improved performance justifies the additional complexity. Layers are added one at a
time in this fashion until overall network growth stops. The stopping rule is that
the constrained fitting criterion has reached a minimum.

2.3.4 Optimization Method

An iterative least-squares (ILS) method for optimizing the types of nonlinear
networks described in this section will now be derived. It will be shown that the ILS
algorithm is closely related to other commonly used optimization methods such as
the least-squares, Gauss-Newton, and Levenberg-Marquardt searches.

The ILS algorithm consists of finding the local least-squares solution to a

linearized version of the network function at each consecutive operating point (s.

25

I

Since our network optimization strategy consists of optimizing subsets of the I
coefficients, in particular those contained in a single network element, the entire
network optimization task can be reduced to a series of single-element optimization
tasks.

Let Vf(2i,}0) be the gradient of the network output with respect to the element

coefficients, I evaluated at -0 and abbreviated Vf. 0. This gradient can then be used

to make a local linear approximation of the network function about (}:

) f(Xi,.) + (Vl)T(- .0) 2:37

Since the general form of the method is iterative, we wish to find a AO such
that the iteration

finew = old + (X AD- 2:38

produces a minimum of the loss linearized about Ood" Here the parameter a

controls the step size and may, for now, be taken to be unity. Taking (}0 as f}old, _Q as

finew, and a to be unity, substitution of Eq. 2:38 into Eq. 2:37 yields

f(2i,0) f (,}) + (VfQ)T(Aft) 2:39

Now, let Vd(y, -i,O) and V2d(y , Si,o) be the gradient and Hessian, respectively,

of the distortion function evaluated at i =-5,,o These are abbreviated V d and

V2dS0, respectively. Because restrictions are put on the objective function such that

it is convex and everywhere twice-differentiable, the gradient and Hessian are
known everywhere and can be used to make a local quadratic approximation of the
loss function in the vicinity of the current network output, 1:

1

d (y,, - d (y,. s0) + (VdSO)T(IJ _ 50) + 2(l -..O)T(V 2d o)(-0 2:40

Since 5i = f(x,() by definition, Eq. 2:39 may be substituted into Eq 2:40 to yield an

approximation to the ith component of the objective function in terms of AD:

d(yi, 4) + (Vds0)T(VfIQ)T(AQ) + (A0)T((Vf0)(V2d0)(Vfo)T)(Af_) 2:41

I
26I

The total empirical loss, J, may then be calculated by summing the approximation of
the distortion function over all observations:

N1 NJ(Q) = N d(',°) + N' (Vd o)T(V I)T(A)

i=l i=1

N

+ E (A0)T((Vfo)(V2d°)(Vfo))(AO) 2:42
i=1

or

J(Q) = J() + b0T(A0) + (A0)TA (A9) 2:43

where

N
1 = ~ (Vf)T(V2 do)(Vf) 2:44

and

1 N (Vd) 2:45
i=l

Eq. 2:43 is minimized over A0_ by the choice

(An) = A71 2:46

Thus

fnew - ald + cc A-1 b 2:47

is the desired iteration.

It can be shown that if the a is unity, the nodal element is linear in its
coefficients, and the loss function is squared-error, then Eqs. 2:44 - 2:38 will generate
the least-squares solution in a single iteration. If a is unity, the nodal element is
nonlinear in its coefficients, and the distortion function is squared-error, these
equations correspond to the Gauss-Newton optimization method. If desirable, the

27

I

step factor, a, may be used to implement a variety of common modifications to the
Gauss-Newton technique.

The Levenberg-Marquardt (LM) method of Appendix B is a combination of
Gauss-Newton and gradient descent methods. The ILS optimization technique may
be modified in a way which corresponds to the LM method by modifying the A
matrix of Eq 2:44 so that

A' = A + X diag(A) 2:48

where a and X are adjusted as described in Appendix B. (Here, the matrix diag (A)
denotes the matrix A with all but its diagonal elements set to zero.)

To make use of the ILS search technique, the analyst must provide the
analytic form of the first and second partials of the objective function with respect to
the network outputs. Additionally, one needs an analytic form of the partial of the
element output with respect to the nodal coefficients 9. Recall that each element is
the composition of a transformation h(z), with a linearly parameterized expansion
(Fig. 2:4). The derivative of the element output with respect to a given coefficient
can be given as follows:

ah dh
- dz %(k.J)

2:49

The only information necessary to compute the gradient is the first derivative of the
post-transformation h(z).

If the network contains feedback, calculatih~g the derivatives becomes slightly
more complicated, because the inputs to a given nodal element may in fact depend I
on prior values of the outputs of the same element. Hence, the inputs are functions
of the parameters of the element, and the core transformation is no longer linear in
the parameters. In this case we must add an additional chain-rule term to the I
derivative calculation of 2:51. Thus, for a single input element, Eq. 2:51 becomes

_h dh J D 'V(k, d)0 axd 2
j - cdj(k,x) + I OjXj(kj,x_) 1 -J' 2:50

j= l d=1 J -'J& d- d

where Z (kd,) is the partial of the j,d term of the series expansion with respect to
the input xd. The only additional information needed to compute the derivative
given by Eq. 2:50 is (1) an analytic form of the derivative of the series expansion basis
function with respect to the inputs, and (2) the gradient of the inputs with respect to
the current parameter subset. The derivatives of the series expansion must be
provided by the analyst; the information may already be known since these

I
28

derivatives prove useful in computing some forms of the roughness penalty as
described in Section 2.3.2.

The derivatives of th? inputs are readily calculated because the inputs to the
current nodal element are outputs from another element, and we have provided an
algorithm for calculating the derivatives for the output of an element.

In some cases, analytic forms of the gradients of the network or the objective
function cannot be provided (Fig. 2:2). In these cases, the ILS method cannot be used
and a direct search method such as simulated annealing, Powell search, or
GRIGARS must be used. A description of GRIGARS is provided in Appendix B.

2.4 Summary

This section has provided a way of viewing generalized function estimation
in a neural network context. The intent is to provide a paradigm that is general to
cover many estimation techniques currently in practice, including sigmoidal
networks, static and dynamic polynomial neural networks, and many of the
estimation techniques popular in the statistics community. What follows is a
discussion of dynamic network algorithms that the authors have implemented,
with an explanation of how they fit into the overall function estimation paradigm
described above. The hope is that the general and comprehensive paradigm in this
section will allow the reader to understand the relationships between various
techniques and the nature of suggested improvements to network generation
algorithms.

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

30 I

I

n
I 3. DYNAMIC POLYNOMIAL NEURAL NETWORKS

A major focus of the work under this contract has been to investigate two
specific aspects of the synthesis and use of neural networks for estimation. The first
concerns the use of tapped delay lines (i.e., memory) within the network elements,
while the second pertains to the use of feedback connections internal to the
network. By including time delays and feedback connections, dynamic networks
can:

• compute time-varying transformations given static inputs

* perform infinite impulse response (IIR) filtering operations along with
finite impulse response (FIR) filtering operations

* provide a phase-shift operator between time-varying inputs

* provide better modeling accuracy with fewer internal degrees of freedom

* handle time-series data more effectively than feedforward networks.

- After defining some key terms, this section outlines two basic algorithms for
constructing and training dynamic networks. The first, Dyn3, builds and fits a
multi-input single-output (MISO) single-layer network with feedback of the output.
The second, DynNet, constructs a multi-input multi-output (MIMO) multi-layer
network with a variety of possible internal feedback arrangements. By placing these3algorithms into the function-estimation paradigm outlined in the previous section,
we will see how they are similar to, and different from, other neural network
implementations. Under the scope of this project, two software packages have beenIcreated to implement Dyn3 and DynNet. These software packages will be described
in this section to the extent needed to elucidate the methodologies behind the

-- synthesis and use of the dynamic networks.

The core transformation of the networks described here uses the polynomial
basis function given in Eq. 2:6. This is the same basis function used in sigmoidal
networks; however, unlike the elements used in sigmoidal networks, which
employ only a first-degree polynomial expansion (i.e., a linear combination of
inputs), the nodal elements used in this work may contain a polynomial expansion
of any order. Since this higher-degree polynomial expansion introduces
nonlinearities into these nodal elements, networks comprised of these elements are
alled polynomial neural networks (PNNs). (Sigmoidal networks derive their

name from the sigmoidal post-transformation, shown in Fig. 2.6, which is used to
introduce nonlinearity into the network.)

IBecause the networks described in this section usually incorporate internal
time delays and feedback paths, they will sometimes be referred to as dynamic
polynomial neural networks (DPNNs).

31

3.1 Equation-Error and Output-Error Modeling I

Recently, two approaches to adaptive IIR filtering have evolved that may also
be applied to dynamic neural networks; these are known as the equation-error and
output-error methods. In the equation-error method, the output estimate is found
using previous output measurements obtained from the system itself or from the
training database. Fig. 3.1 shows the application of an equation-error network to asystem identification problem.

1

- "
Database

I

!

+At'
III

Internal Delays Aand

No Feedback II

adapt

Figure 3.1: Equation-Error System Identification

Because an equation-error network need not contain internal feedbacks, one
can treat the equation-error formulation as a feedforward network. As such, the
rapid batch least-squares techniques used for the synthesis of static feedforward
polynomial neural networks (Appendix A) can be applied to the synthesis of
equation-error dynamic networks.

1

It is not, however, always possible (nor necessarily desirable) to use the
equation-error formulation. In an on-line situation, prior measurements of the
system output(s) may not always be available for use as inputs to the network. Even
if prior measurements are available, it has been shown [Shynk, 1989] that the
equation-error formulation can lead to biased coefficient estimates, especially in I
cases where the measured responses contain additive noise.

The output-error formulation feeds back previously estimated output values.
Fig. 3.2 shows the application of an output-error network to the same system
identification problem that was shown in Fig. 3.1.

32

I
I

Plant or

II
I - Database

I

ANN with
Internal

Feedbacks and - L
Time Delays

irtemna
Feedback

adapt

Figure 3.2: Output-Error System Identification

The output-error network has both internal time delays and internal feedback
paths, and as such has all of the advantages of dynamic networks that were listedabove.

Dyn3 and DynNet can synthesize both equation-error and output-error
dynamic neural networks. Since internal time delays are the only aspect of
equation-error networks that distinguishes them from static feedforward networks,
this report will instead concentrate on the creation and optimization of output-error
networks. However, it will be seen that even in the synthesis of output-error
networks, a number of equation-error networks may be created as intermediate
steps.

3.2 Optimization and Initialization

The potentially improved performance of output-error dynamic networks
comes at a price. Because of internal feedbacks, the nodal elements of these
networks can become nonlinear in their coefficients. Fig. 3.3 shows a simple
example of a network containing feedback and time delays. Note that At represents
a delay of one time step.

In Fig. 3.3, the output, z A , of nodal element A depends on the input vectorx,

and the coefficients, -a, of element A:

Z A = f(Xi. -A) 3:1

33

I
I
I

Nodal
Element z

A Nodal

,wElementNoda "axB
si. 1 Element

Figure 3.3: Sample Dynamic Network

Thus, if f(.) is linear in its coefficients, the coefficients of A may be optimized using a [
batch least-squares technique. For nodal element B, however, the story is different:

zB = f(Ox, - , 0QB) 3:2

But 5si-1 is also some function, g(_QB), involving % ; thus

zB = f(i, g(0B), -Qs) 3:3

which is usually not linear in the coefficients OB . Any nodal element that isI

involved in a feedback loop is nonlinear in its coefficients, and the batch least-
squares techniques that are useful in synthesizing static feedforward networks [
(Appendix A) cannot be used to fit these nodal elements. Instead, the optimization
of dynamic networks and nodal elements generally involves one of the more
computationally intensive iterative techniques described in Section 2.3.4 and
Appendix B.

Feedback connections introduce another difficulty concerning network
optimization. Parameter nonlinearities tend to distort the surface of the objective
function and often introduce multiple minima, making it impossible to guarantee
global optimization in all cases. Because of these multiple minima, great care must I
be taken when initializing the parameters for an iterative search; additionally, it [
may be desirable to use a multi-modal search method that is better suited to find the
global minimum of a surface having numerous local minima.

Another cost of dynamic networks is the initialization required, which results
from the use of time delays. System input and/or output values must be used to fill
all delay banks before the element core transformation can generate an output [
value. This does not pose a problem if one can afford to wait M observations before
generating the network output, where M is the maximum delay value. In other

34I

applications, however, such as tracking and control, output estimates must be
generated beginning at the first observation. In these cases, one may need to create
a static network to provide the network output or to initialize the values of the
delay banks contained within the dynamic network.

3.3 Single Layer MISO Dynamic Network (Dyn3)

The Dyn3 algorithm is next described; note that the DynNet algorithm is
based upon and subsumes the Dyn3 algorithm.

3.3.1 Network Structure

In previous work on dynamic networks [Barron, Abbott, 1989; Parker,
Cellucci, Abbott, 1991] a distinction was made between a non-memory feedforward
nodal element and a memory feedforward nodal element; the distinction being that
the former did not include the optional tapped delay line described as part of the
nodal element definition (see Section 2.2). Although in some cases this is a helpful
distinction, the non-memory feedforward element can be seen as a special case of
the memory feedforward element where there are no time delays. Additionally,
with the exception of some initialization issues which are addressed below, the
inclusion of input time delays does not fundamentally change either the nature of
the network nor the method for creating the optimal network. Outputs of the
tapped delay lines are treated simply as an additional set of candidate inputs to the
series expansion.

Removal of the distinction between the two types of feedforward elements
does not mean that the decision to build elements with or without tapped delay
lines is arbitrary. The delays are often appropriate and helpful when dealing with
time-series data. Conversely, the delays are inappropriate when the network will be
interrogated using a sequential set of data vectors that have nothing to do with each
other.3 The dynamic network algorithms and their corresponding software
implementations described herein can incorporate input delay banks; however,
decisions whether to use them and what delay values to use are left to the analyst.

The series expansion, or core transformation, chosen for the dynamic nodal
element is the Kolmogorov-Gabor (KG) multinomial [R.L. Barron, 1984], which is
an algebraic sum of terms:

3 As an example of a network that should not use time delays, consider a network that estimates the
cholesterol level of an individual given data concerning his age, weight, eating habits, etc. It would be
inappropriate to retain information concerning a prior individual (i.e., internal time delays) when
estimating the cholesterol of the current individual, especially if there were no connection between the
two individuals (genetic, same diet, etc.).

35

I

z= o + Xe xi + Xe, x xj + Oijk Xi X Xk + 3:4
i ij ijk

Since it has been shown that the KG multinomial can model any analytic
single-valued transformation, it is a good choice. But, in principal, many kinds of
building-block elements could be used in modeling by induction (see Section 2.2.2). m
The attention to algebraic elements derives from the pioneering work in the 1940s
of Kolmogorov and, working independently, Gabor. They demonstrated the near
universality of multinomials in representing physical processes, including dynamic I
systems. In fact, recent developments in statistics, information theory,
computational methods, and approximation theory suggest that a multinomial
description of the network learning process highlights some of the similarities (as I
well as important differences) among network syntheses and modern statistical
inference methods [A. R. Barron, R. L. Barron, 1988].

The number of terms (coefficients) in the complete KG multinomial of Eq. 3:4

(R + Nkg)!
3:5

R!Nkg!

where R is the rank of the multinomial, which is the maximum interaction-order
(i.e., how many cross-couplings are allowed) and the maximum degree (i.e., the sum
of the powers of any given term). Eq. 3:4 explicitly shows the first four KG m
multinomial terms, corresponding to all rank 0, 1, 2, and 3 terms.

Nkg in 3:5 is the number of inputs to the multinomial and is determined by m

N
Nkg = Idi 3:6

i=1

where N is the number of inputs to the network and di is the number of time delays I
associated with the ith input value. The number of network inputs is determined
largely by the physical nature of the application, and the analyst has only marginal
control over this quantity. The analyst has complete control, however, over the
number of delays and the order, R, of the KG multinomial; both quantities should
be specified with care to avoid a combinatorial explosion in the number of
coefficients associated with a given element.

As can be seen from Eqs. 3:5 and 3:6, the number of terms in the complete KG
multinomial can become large very quickly for even small values of N, di, and R.
To assist the analyst in keeping the number of coefficients down, some very specific
subsets of the full KG multinomial can be used with great effectiveness. Experience
has shown that in many applications the cross terms, xixj, are more important than
the power terms, xi 2 or even xi2xj.. By eliminating all terms where any given input

36

is raised to a power greater than one, one can significantly reduce the complexity of
the element, yet still retain its power to introduce nonlinearities when such are
needed to produce a desired output. This form of reduced KG multinomial is often
called a multilinear multinomial; a three-input rank-two multilinear expansion is
as follows:

z = 00 + 1x1 + 0 2 X2 + 0 3 X3 + 04X1 X2 + 0 5X I X3 + 0 6 X2 X3 3:7

If the analyst wishes a further reduction in the number of terms in the core
transformation, another subset of the KG multinomial may be used which
eliminates from Eq. 3:4 all terms which involve more than one variable. This series
expansion is often called an additive polynomial, and a three-input rank-two
additive expansion is:

z = 00 + 0 1x1 + 0 2 X2 + 03 X3 + 0 4X1
2 + 0 5X2

2 + 06X3 2 3:8

Any of the above KG multinomial expansions may be reduced to a simple
linear combination of terms simply by specifying a rank of one.

The dynamic nodal elements do not make use of a post transformation, h(.),
as described in Section 2; however, the addition of a clipping transformation might
prove useful in future work. A potentially useful transformation might be:

A z>A
h(z) z B5z<A 3:9

B z:5B

where A and B are chosen such that h(z) is not allowed to exceed the values taken
on during network training. This transformation would have no effect on the
training algorithm because h(z) is linear in the training region; however, it may
improve network stability on unseen data.

Our previous work on dynamic nodal elements made the distinction between
memory-feedback (MFB) and memory-feedforward (MFF) nodal elements [Barron,
Abbott, 1989; Parker, Cellucci, Abbott, 1991], as shown in Figs. 3.4 and 3.5. However,
allowing the internal feedbacks of the MFB nodal element prevents us from using
the general network estimation paradigm that was outlined in the previous section.
For this reason, rather than handling the feedback internal to the element structure,
it is better always to use a memory-feedforward nodal element, which fits into the
paradigm of Section 2, and to handle the feedback via layer interconnections.

37

I
I
I

~I

I

I I

I.. _ _ _ _ _ _ _. . ..

I I

I II I

II
I I

I * I

-8 I

-

N

0NII

*

C)C

* . -

S39

U (

m~

m
I

Since Dyn3 is a MISO network, and since the core transformation internal to
the nodal element can take on an arbitrary degree of complexity, each Dyn3 layer is
limited to a single element. The output from the Dyn3 layer may be fed back
through a single time delay and made available as an input to the network (Fig. 3.6).
This construction results in a network that fits the general function estimation
paradigm described in Section 2 and is still functionally equivalent to the MFB
nodal element described in previous work.

3.3.2 Network Training

Because the complexity of the Dyn3 element is not limited (its maximum
complexity is set by the analyst), determining the structure of a Dyn3 network entails
using the PSE criterion (Eq. 2:31) to build or carve terms from the arbitrarily complex
single element. The "building" algorithm is as follows:

1. Fit all single terms (i.e., parameters) one at a time, fixing all other
parameters to zero. Keep the one that yields the best score as measured by I
the objective function.

2. Now fit all combinations of two terms in which one of the terms is the
element found in Step 1. Keep the one with the "best" score.

3. Since the objective function includes a complexity penalty, if the score in
Step 2 is not less than the score in Step 1, the additional complexity did not
yield a corresponding improvement in the network performance;
therefore stop the building. If, on the other hand, the score in Step 2 is I
better than that of Step 1, the performance is improving and terms should
continue to be added, one at a time, until the score ceases to improve.

This method of building is called a greedy build, because once a term is found that
improves the score, it is kept. Another method of building consists of trying all
possible pairs of terms in Step 2; however, its increased computing time, in general, I
does not pay off, so it is not included as an option with Dyn3 or DynNet.

The carving algorithm is similar to the building algorithm:

1. Fit the entire element, consisting of D non-zero terms.

2. Now, by removing one term at a time, fit all combinations of D-1 terms
and keep the combination with the "best" score.

3. Since the objective function includes a complexity penalty, if the score in
Step 2 is not less than the score in Step 1, the complexity of the element in
Step 1 is just sufficient, and no further terms should be "carved" away. If, I
on the other hand, the score in Step 2 is better than that of Step 1, the

I
40 l

N

0 10

vt

I I
e,,1

II

Ng,

I I '*1 I I

XI XI X N"

n* I

S-.

*~~ _______

XI I

* 41

I
i

performance is improving and terms should continue to be carved, one at
a time, until the score ceases to improve.

This method of carving is called a greedy carve since once a term is carved away it
cannot be used again. Another method of carving consists of carving all possible
combinations of terms in Step 2; however, the additional computing time required
by a non-greedy method of carving is not warranted. It should be noted that neither
building nor carving would be possible without an objective function that
appropriately penalizes network complexity.

Building or carving of terms also corresponds to choosing which delay values
are important, because the coefficients that correspond to unimportant delay values
will not survive the process. Thus, in the same manner, both the element weights
and the appropriate time delays are chosen automatically. This method of choosing
the time delays is the most reliable, but it is also the most computationally
intensive, because there are several terms associated with each delay value.

One alternative means of structure selection would be to build or carve in i
"chunks." In this method, all the coefficients that correspond to the output of a
particular time delay would be added or removed simultaneously. Once the best
structure is determined, building or carving could continue in the normal fashion if
desired. This type of building and carving was not implemented in Dyn3.

Since the Dyn3 layer structure is fixed and only one feedback is possible, i
analytic forms of the network gradient and Hessian with respect to the element
coefficients can be specified. Additionally, since the loss function used is squared-
error, it is possible to specify the first and second partial derivatives of the objective
function with respect to network output. Since the gradient information is
available, the gradient-based Levenberg-Marquardt iterative search can be used to fit
the coefficients of a Dyn3 network. (See Appendix B for details of the Levenberg-
Marquardt algorithm.)

As mentioned above, with a multi-modal search surface, great care must be
taken in initializing the network coefficients, especially if a unimodal gradient-based
search technique is used to fit the coefficients of the network. Dyn3 allows for two
options concerning the initialization of the coefficients: zero initialization and least-
squares initialization. In general, it has been found that initializing all coefficients
to zero provides the best results. Since a network of all zero coefficients is stable I
(albeit trivial), any further optimization done from that point will tend also to result
in a stable network. Terms that ensure stable solutions may also be added to the
objective (i.e., loss) function as appropriate. I

Occasionally it is helpful to initialize the search using the coefficients found
when the network is set up in equation-error configuration, so that the batch least- I
squares method can be used to optimize the coefficients. Once the feedback is
connected, however, stability is no longer guaranteed. If the least-squares solution u

42

with feedback is unstable, it is possible but difficult for the optimization technique to

bring the network back into a region of stability.

3.4 Multi-Layer MIMO Dynamic Networks (DynNet)

3.4.1 Network Structure

DynNet uses the same basic nodal elements that are used by Dyn3. As with
Dyn3, the complexity of the core transformation (the maximum number of cross-
couplings allowed) is specified in advance by the analyst. However, DynNet differs
from Dyn3 in its use of nodal elements.

While DynNet can create an arbitrarily complex single-element Dyn3
network, in DynNet the overriding philosophy is to use larger numbers of simpler
elements. Element complexity (i.e., the number of coefficients) is limited in the
following ways:

1. Element core transformations (KG multinomials) take on a maximum
allowable rank as specified by the analyst (same as Dyn3).

2. Terms in the complete KG multinomials may be eliminated by using
either the multilinear or additive reduced form of the multinomial (same
as Dyn3).

3. If an element has a core transformation of rank greater than one, the
maximum number of inputs to that element is limited to three. Or, to
restate the constraint another way, an element may make use of more
than three inputs only if its core transformation is a simple linear
combination of the inputs (unique to DynNet).

It is the third constraint in the above list that allows the elements to be
simplified and forces the network interconnections to perform a large share of the
estimation task. A nodal element with a KG multinomial of rank one and
unlimited numbers of inputs is called a linear (affine) element and is shown in Fig.
3.7. If the analyst so desires, DynNet will make linear elements available for use by
the network construction routines in addition to elements of the specific type and
complexity that were specified by the analyst.

DynNet layers can be made up of any number of elements. Following the
method described by Ivakhnenko [1969], each DynNet element is trained to solve the
entire input-output mapping problem as best it can; therefore, each DynNet layer
always begins with at least one element responsible for fitting one of the network
outputs. The layer size may later be reduced, however, if subsequent layers choose
not to make use or some of the outputs from a prior layer.

43

I

Linear Element

16

x, (t) .x, (t - At)

At 1 (-"nt

A x t- nat)

At I

* shift register II

Figure 3.7: Linear (Affine) Element 3
I

In a network with intra-layer feedback, layer L is independent of all the

subsequent layers; thus layer L can be determined before the rest of the network
structure has been finished. In the output feedback case, however, layer L is
dependent on all previous and subsequent layers, and the coefficients of layer L may
need to be refitted as new layers are added.

3.4.2 Network Training

DynNet incorporates a variety of heuristics to search for a network structure
of just-sufficient complexity. Key to the DynNet algorithm is a method whereby a
large variety of equation-error network structures are evaluated very rapidly. The I
most promising structures are then saved, feedbacks are connected, and thealgorithm searches this subset for the best output-error network.

I
44 I

-- -- -----------------

4--5

tt
a

.4--J

-- --- ---- -- --- -

* hiI NI45

NN

c- IC

- . IW

U cI
cu > P

>1 m I

46

Fig. 3.10 shows the general algorithm for constructing either an output-
feedback or intra-layer-feedback MISO DPNN. This algorithm may be easily
extended to the MIMO case as in DynNet; however, the MISO case is shown here
for readability.

The DynNet algorithm shown in Fig. 3.10 may be summarized as follows:

1. Find the M best MISO equation-error Dyn3 networks for each output, with
the element complexities limited as described above. If a database output
is used as an input variable, make sure it passes through a one-step time
delay.

2. To account for additional error that might be introduced when the true
equation-error (database) values of the network output are replaced by
feedbacks of the output estimates, add an additional PSE penalty term
proportional to the prior estimate of the error variance of the variable that
will be fed back.

3. Recombine the elements from Step 1 so that there are M potential MIMO
layers, with each layer containing one element corresponding to a network
output.

4. If intra-layer feedback is desired, replace the equation-error network inputs
which are prior values of the output columns of the training database,
with feedbacks of the output estimates, thus creating M potential output-
error first layers.

5. Optimize the coefficients of each layer using a GRIGARS search technique.

6. Continue adding layers until the overall network score ceases to improve.
Subsequent layers are built in the same way as the first layer, except that in
addition to system inputs and outputs, every element on subsequent
layers must have at least one input which comes from the immediately
preceding layer.

The above algorithm may be tuned and modified in a number of ways depending
on the application.

3.4.3 Command-Line Options

A useful way by which to summarize the use of (and potential modifications
of) to the algorithm is to describe the command-line options available in DynNet.
To execute DynNet in UNIX, simply type "DynNet", followed by one or more of the
following command-line options:

47

I

"'
I

Set up candidate inputs I
for equation-error case

Try to model the outputi
using a linear element

I

Try to model the outputusing all possible single-

input elements/

lTry to model the output prior value of network
] using all possible two- oupt

M element outputs [input elements

become candidate I
inputs for Try to model the outpu Connect layer output
subsequent layers using all possible three-to appropriate element Iinput elements /tco input

Save best M elements Rescore the element

F e e d b a c k 7' Y e s M
Imn

s

Yes Noelc qato-ro

I
etoutput Ymp es Rpaeeuto-ro

Optimize th fine-tne weights

Figure 3.10: DynNet Algorithm for Constructing a MISO DPNN I
(Extendable to MIMO DPNN)

48

-train training-data

To train a network, the training data must be in a file called the training
database. Data files are composed of blocks, observations, and variables. A
block (typically a time series) is made up of observations. Each block may
contain a different number of observations. A data file is broken into a
header section and a data section. For TEXT files, the header section is
composed of an optional "size" line, and a line of variable names. The
"size" line is composed of a "#', followed by the number of variables, the
number of blocks, and the number of observations in each block. In
BINARY files, the variable names are stored along with the number of
blocks and the number of observations in each block.

In TEXT files, each block is terminated with four hyphens on a line by
itself. Each observation has the same number of variables and is
terminated by a new line. Observations may be split onto multiple lines
by ending a line with a backslash. The number of variables, observations,
and blocks is not limited.

After a DynNet network is created it is written out to a file with the name
"DN.mod". In addition, the performance of the network on the training
database is recorded in the "DN.eval" file.

" -eval mod-file evaluationdata

The -eval option allows a network that is stored in the mod.file to be
evaluated on unseen data that are stored in the evaluationdata file. The
evaluation data file has the same format as the training data file described
above; although the order of the columns containing the variables is not
important, variable names are required to be the same as those used to
train the network. Either -train or -eval must be specified each time
DynNet is executed.

" -o output-variable(s)

The -o option allows the user to specify which column(s) in the training
data base is (are) to be considered network output(s). A case-sensitive list
of variable names follows the -o option. For each name, there must be a
corresponding column in the training database, otherwise DynNet will
report an error.

" -i input-variable(s)

The -i option allows the user to specify which column(s) in the training
data base is (are) to be considered network input(s). If the -i option is not

49

I

specified, all variables besides the output variables are assumed to be
candidate network inputs.

-ignore ignore-variable(s) I

The -ignore option allows the user to specify columns in the database that
should be ignored by the network generation algorithm. Typically either
the -i or the -ignore option is specified, but not both.

-od output.delay(s) and -id input.delay(s)

DynNet allows the user to specify the values of delays to be used in the
tapped delay lines internal to the DynNet nodal element. The algorithm
allows the user to distinguish between the delay values that will be used
on element inputs that have been fed forward from network inputs or
previous layers, -id, and delay values that will be used on element inputs
that have been fed back from this or subsequent layer outputs, -od.

If -id is not specified, it is assumed to be zero. If -od is not specified, it is

assumed to be one; an -od value of zero is not valid.

" -olog maxdelay [start] and -ilog maxdelay [start]

-olog and -ilog are shortcuts for specifying feedback and feedforward delay
values respectively. They allow the analyst to specify logarithmically
spaced (base two) delay values between maxdelay and start. If start is not
specified, it is assumed to be 1. For example, the command -olog 32 would
result in feedback delays of 2, 4, 8, 16, and 32.

" -olin maxdelay [start spacing] and -ilin maxdelay [start spacing] I
-olin and -ilin are shortcuts for specifying feedback and feedforward delay
values, respectively. They allow the analyst to specify linearly spaced delay
values between maxdelay and start; the delays are spacing apart. For
example, the command -ilin 0 20 5 would result in feedforward delays of 0,
5,10,15, and 20.

" -netfb and -layerfb

The -netfb and -layerfb options tell DynNet whether to use output- I
feedback or intralayer-feedback mode respectively. Only one of these
options may be specified.

" -nodefb

Typically, nodal elements are initially fitted using the equation-error I
method described above. If the -nodefb flag is specified, DynNet will feed
back the nodal element output as input to the node, instead of using the

50 I

corresponding equation-error database input. For example, suppose one of
the possible nodes to be tried had as inputs x1, y,, and Y2. Further, suppose
that this particular node is responsible for producing Y2. With the -nodefb
flag set, DynNet would set up this node using only two database inputs, x1
and yl; however, DynNet would also set up a feedback connection between
the node output and its input.

The -nodefb flag can significantly slow down training time because a
number of candidate nodes will now have feedback connections and
cannot be fitted using batch least squares. -nodefb can be especially helpful
for single output networks when the equation-error network is not
bootstrapping the output-error network sufficiently.

" -nosharing

When building a multiple output network, DynNet allows nodes
responsible for modeling one of the outputs to use, as candidate inputs,
outputs from nodes responsible for modeling other outputs. When the
-nosharing flag is set, DynNet treats the M-output network as M separate
single-output networks.

" -ml degree, -a degree, and -c degree

The -ml, -a, and -c options allow the user to specify what type of KG
multinomial expansion should be used internal to the nodal element.
The user has a choice of the multilinear, additive, or complete
polynomials as defined in Section 3.4.1. The degree specifies the
expansion rank.

* -sigmap sigma-prior(s)

Since DynNet uses the PSE criterion to score a network, the analyst must

specify a sigma prior (cp) for each output. The a1p value is an a priori
estimate of the model errors in the units of the data. Sigma-prior values
directly affect the model complexity penalty; the larger the value chosen,
the more each added degree of freedom (each new coefficient) will be
penalized in a candidate model, so that the final model will be less

complex. Therefore, the value of a1p is adjusted by the analyst to obtain
models with appropriate levels of complexity.

The default value of a1p is one-tenth the measured standard deviation of
the output variable; however, it is recommended that the analyst override
this value with their own estimate. If, after network generation, it turns

out that the (ap chosen was either significantly larger or smaller than the

51

I
I

true model error standard deviation, ap may be adjusted and a new model
created.

-globalo

The -globalo option instructs DynNet to optimize globally all the network
coefficients once the generation of the network structure is complete.
Globalo uses the GRIGARS algorithm (outlined in Appendix B) for the
optimization.

"-s

The -ls option instructs DynNet to begin the output-error optimization
with the coefficients found via equation-error optimization. These
coefficients are called the least-squares coefficients.

" -carve and -buildI

Either -carve or -build may be specified, but not both. These options allow
the number of coefficients internal to each element to be reduced using
the carving or building algorithms described in Section 3.3.2.

"-white I
This option instructs DynNet to try linear elements (Fig. 3.7) in addition to
the type of element specified via the -ml, -a, or -c options described above.

" -layerlim

-layerlim specifies the mpximum number of layers that DynNet will try
while generating a specific network model.

-layersize layersize(s)

-layersize allows the analyst to specify the number of "best" elements that
will be kept after all the equation-error element possibilities have been
tried (Fig. 3.10). The analyst may specify a unique M for each layer.

3.5 Future Research

The DynNet and Dyn3 algorithms have been successfully applied to a number I
of modeling, prediction, and control tasks. Some of these applications are described
in Section 4 of this report. During the course of applying the algorithms, some
potential improvements and recommended areas for future research have been
identified. These are mentioned below.

I
52

While in many circumstances finding good MFF nodes is a good way to
"bootstrap" the dynamic network generation process, in some situations, especially
with noisy data, the MFF results may be misleading. At the moment, fitting time
limits the number of MFB structural possibilities that may be tried.

There are two improvements that could increase training time sufficiently to
allow more exploration of MFB structural variations. First, by implementing the
projection-pursuit type of layer training paradigm that is described in Section 2.3.3, it
may be possible to reduce the number of "best" layers that are kept as candidate
inputs to subsequent layers. Second, algorithms could be developed to allow a
gradient-based search on any subset of coefficients in a DPNN of arbitrary structure.
While this search would potentially be subject to local minima problems, it would
converge, in general, much more rapidly than the GRIGARS direct search method

currently employed. Eq. 2.52 provides the mathematical basis for such an extension.

Another potential improvement to DynNet would be to investigate the
effectiveness of a recursive-least-squares (RLS) type of network optimization. For a
given nodal element, this would involve the assumption that the first term in Eq.
2:49 is the dominant term and the effect of the gradients of the element inputs have
a small effect on the overall gradient of the nodal element. If this is the case, the
batch gradient routines outlined in the last chapter may be converted into recursive
techniques of the least-squares or Levenberg-Marquardt type depending on the
choice of the A matrix.

Currently, for estimation networks built using the Ivakhnenko strategy
(Section 2.3.3), initialization of the delay banks is not a problem. For other types of
loss functions or other optimization strategies, however, it may not be obvious how
to initialize the shift registers internal to the network. One solution to this problem
would be to modify the optimization algorithms of Section 2.3.4 so that the initial
values of the outputs of each element are also treated as parameters which need to
be optimized. This could potentially eliminate the need for a heuristic to find the
best set of initializing parameters.

Both Dyn3 and DynNet use the squared-error loss function to build networks
suited for estimation purposes. By replacing this loss function with the logistic-oss
function (Eq. 2.20), and by adding a post processor that calculates conditional class
probabilities (Eq. 2.22), it would be possible to build networks that can classify time-
series data. Currently, much of the work involved in classification of time-varying
signals consists of determining and extracting appropriate feature "snapshots" of the
data to send as inputs to a static feedforward network. A dynamic neural network
classifier could potentially find and generate its own time-varying features as a
natural outcome of the optimization process. Such a classifier might be helpful in
signal processing and active control applications.

53

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

54I

4. APPLICATION EXAMPLES

4.1 Active Control of Complex Combustion Processes

In Section 2, a general paradigm was presented for understanding both static
and dynamic neural network function estimation. In Section 3, two specific
algorithms, Dyn3 and DynNet were introduced. These algorithms are specific
implementations of a general paradigm for networks based on polynomial
expansions and containing internal feedbacks and time delays. The current section
illustrates the utility of these dynamic network synthesis algorithms for active
prediction and control by demonstrating their successful use in several applications
and comparing these results with those obtained using static feedforward networks.

The need to control complex systems under conditions of uncertainty has
made apparent the need for new methods that overcome the shortcomings of
conventional control techniques. For example, active control of complex processes
requires that the controller learn the dynamics of (generally) incompletely specified
(and possibly nonlinear and time-varying) plants from noisy data, rather than
having these dynamics specified analytically. Neural-network based controllers, or
neurocontrollers, offer promise in this area because of their ability to learn
inductively (which thereby provides an on-line adaptation capability and helps
avoid model development costs), their ability to approximate functions, and their
potential for parallel hardware implementation (and therefore rapid computation)
[Antsaklis, 1992].

Despite the large number of designs in the literature, neurocontrollers may
generally be placed into one or more of five generic categories: (1) supervised
controllers, (2) direct inverse controllers, (3) neural adaptive controllers, (4)
controllers based on the backpropagation of utility, and (5) controllers based on
adaptive critic methods [Werbos, 1991]. These controllers tend to grow in
complexity in the order that they are listed. These five basic approaches are briefly
outlined next.

Supervised control requires that the desired controller output be known prior
to network training. Direct inverse control is based on using the inverse of the
plant dynamics to control the system. In neural adaptive control, neural networks
replace the conventional linear mappings used, for example, in model-reference
adaptive controllers and in self-tuning regulators. Backpropagation of utility
(through time) adapts an optimal controller by adjusting network weights so as to
extremize an objective function. (Note that adaptive optimizing control, where the
controller continually seeks on-line to extremize an objective function, without a
priori attempt to capture in a controller model the dynamics of the plant, is included
here as a special case.) Finally, the underlying idea in adaptive critic control is to
approximate the Bellman equation of dynamic programming using adaptive
networks.

55

I
i

Each of these generic approaches may be further subdivided into indirect and
direct adaptive control methods. Indirect methods employ system identification
techniques to obtain an explicit model of the plant; model parameters are then i
inserted directly into the controller. Direct methods determine the control rule
without forming such a system model; controller parameters are adjusted to reduce
some norm of the output error [Sutton, 1992; Narendra and Parthasarathy, 19901. I
The latter approach is taken in the application examples illustrated below.

4.2 Inverse Control of a Ducted Flame i
The first application example comes from work that was performed in

collaboration with personnel of the Naval Air Warfare Center, Weapons Division
(NAWC/WD), China Lake, California. This work was focused on extending the
flammability limits in a ducted flame apparatus, and on suppression of combustion
pressure oscillations in a one-megawatt laboratory combustor. Specifically
envisioned is the use of active control techniques to acoustically manipulate the
initial shear-layer instability at the flameholder, thereby disrupting the
development of large-scale coherent vortical structures; the latter have been shown
to affect the flameholding process and to drive combustion instabilities. Prior
experiments have demonstrated the capability of active control of acoustic forcing to
affect the reacting shear layers, thereby extending the operating envelopes over
those achievable with passive techniques. This work is leading to the use of
adaptive nonlinear neural network feedback control of combustion systems, which
are open-loop unstable over part of their operating range [Hansen and Hendricks,
1992]. The data provided by NAWC/WD included six data sets (herein referred to as
ACTD1.1, ACTD2.1, ACTD3.1, ACTD3.2, ACTD3.3, and ACTD3.4), each composed of
16,384 samples representing the input acoustic modulation (AM) signal and the
flame response measured by a photodiode (PD), as shown in Fig. 4.1. These data
were collected with the system in an open-loop configuration and presumably over
a linear region of operation. Files ACTD1.1 and ACTD2.1 represent data collected on I
the plant using a different (and poorer quality) AM excitation signal than was used
for data sets ACTD3.1, ACTD3.2, ACTD3.3, and ACTD3.4. Therefore, in the results
below, only the latter four data sets are discussed. The task is to synthesize a
controller for the plant, whose function is to process the measured PD signal and to
provide the subsequent AM excitation of the system.

Because no mapping of desired controller actions for different sensor
measurements was available, supervised control was not relevant; direct inverse
control then represents the next-simplest technique. As shown in Fig. 4.2, direct i
inverse control uses the system identification of the plant to synthesize an effective
controller; the method is basically an open-loop technique, but the loop is actually

I
56l

closed through adaptation of the plant model.4 In actual implementation, the
configuration for implementing direct inverse control illustrated in Fig. 4.3 would
be preferred for computational reasons.

Flame - Photodiode and

-- L Detector

Ac.. -. -
~tm cm b

Modulator

Carrier SignalSePon
Modulated (480 Hz)

Signal

Figure 4.1: Schematic Diagram of Ducted Flame Apparatus

AcousticPhotodiode (PD)]Modulation

SetPoint (AM)(AM)
0- Plant- Plan tP

Error

Adapt .. /

/ A
-~ I PD

---~i Plant

/

Figure 4.2: Control System for Regulating Flame Height or Quality

4 In all figures, the light-gray lines represent processes relating only to adaptation of the model, not
the main processing path, which is reflected by the black lines.

57

I
I

"Adapt

Acoustic

Photodiode (PD) /' Modulation A

SetPoint (AM) PD
• -'-] /l'n -1 Plant-"

Error

PD

= -n Delay

!I

Figure 4.3: Preferred Implementation of Control System for
Regulating Flame Height or Quality 3

4.3 Static Polynomial Neural Network System Identification Results 3
Fig. 4.4 illustrates the test setup used to evaluate how the polynomial neural

network (PNN) models performed in predicting the flame response (measured by a
photodiode) to acoustic modulativiL (using AM excitation signals). The static PNN I
configuration used is shown in ' ig. 4.5. Performance results are tabulated in Table
4.1 and are shown in Figs. 4.6 aid 4.7, where each model is used to predict the
,-hotodiode response to the AM exctation data. Fig. 4.b gives prediction results for
the same AM excitation as that used to identify the model; Fig. 4.7 gives a, example
of the fitting performance when the AM excitation was difteient from that usd to
identify the plant (viz., file ACTD3.1). Fig. 4.6 thus corresponds to the diagonal I
terms in Table 4.1, and Fig. 4.7 corresponds to the off-diagonals in Table 4.1 for the
row labeled ACTD3.1. I

As mentioned above, the data on the diagonal in Table 4.1 represent the
performance on the fitting data, whereas off-diagonals represent the test (i.e.,
evtuation) data. In the operating region around which the systems were
characterized, the models performed nearly as well and sometimes better on the
evaluation data as on the fitting data. It is therefore concluded that the models have
extracted the relevant information from the available data.

I

58 l

I
I

Acoustic Photodiode
Modulation Prediction

(AM) (PD)

I
Figure 4.4: Use of Identified Plant Model in Estimation Experiment

I

I xxt-1

4N.

x(t-2) Linear
Combination A

with Y(t
i Delay Constant

(51 Terms)

I x(t-49) ,

I
Figure 4.5: Static PNN Used in the System Identification

i Experiments

I
Table 4.1: Mean Square Error of Plant Output Prediction Using

Static PNN
Test--*I Fit-, ACTD3.1 ACTD3.2 ACTD3.3 ACTD3.4

ACTD3.1 1.43 1.61 1.57 1.47

ACTD3.2 1.45 1.59 1.58 1.45

ACTD3.3 1.44 1.61 1.56 1.48

ACTD3.4 1.46 1.60 1.59 1.44

I
i 59

7I

0I

2 0 5 10 15 1

Time (msec.)

(b) ACTD3.2

Figre4.6 Satc PN reictonof hoododeOupu Usngth
Sam A Eciatin igalas ha Uedto itth Mde

76

8

7.

6.

5

4.

3-

0

-1IA'
-1,

~I-PDl
.2 I

-3 ,' 1 1& 15 10

Tine (rmsec.)

(c) ACT D3.3

S

7."

0

E2

HA
-1P

.3...........1......... . 1 5 1 0

Time (m ec.)

(d) ACTD3.4

Figure 4.6 (continued): Static PNN Prediction of Photodiode Output
Using the Same AM Excitation Signal as that
Used to Fit the Model

61

8I

7

6

5

21

.31

0 25 50 75 100 125 150
Time (msec.)

(a) ACTD3.2

7.U

.

2.

0

.2-

025 50 75 100 125 150I

(b) ACTD3.3

Figure 4.7: Static PNN Prediction of Photodiode Output in
Response to AM Excitation Different than was
Used to Fit the Model (viz., file ACTD3.1)

62

7.

0,

.

4 .

23,

-2, - P

-3
0 25 50 75 100 125 150

Time (rmsec.)

(c) ACTD3.4

Figure 4.7 (continued): Static PNN Prediction of Photodiode Output
in Response to AM Excitation Different Than
Was Used to Fit the Model (viz., file ACTD3.1)

4.4 Dynamic Polynomial Neural Network System Identification Results

The architecture of the dynamic polynomial neural network (DPNN) used to
model the plant is given in Fig. 4.8. Table 4.2 and Figs. 4.9 - 4.10 provide results for
the DPNN tor the same experiments as conducted above for the static PNNs. Note
in Table 4.2 that performance is improved over the static case even though the
DPNN model had less than one-fifth as many internal degrees of freedom.

63

X~t 1)
x~t) Jx~t-I

Delay A (t-2)

Figue 4.: D nami PN Use nt he Sysmb i enti fiato

Experiments)

AI

Fiur 48:Dynamic PNNUsdithSyemInifcio

Fit ACTIJ3.1 ACTD3.2 ACTD3.3 ACTD3.4
FtD. 14 1.615314

ACTD3.2 1.42 1.54 1.54 1.423

ACTD3.3 1.40 1.56 1.52 1.44

ACTD3.4 1.43 1.55 1.56 1.404

64

v 07 160 15 ' 5

Time (mec.)

(a) ACTD3.1

6

0
Q6.

0

-3

25 7 160 115

Time (msec.)

(b) ACTD3.2

Figure 4.9: Dynamic PNN Prediction of Photodiode Output Using
the Same AM Excitation Signal as that Used to Fit the
Model

65

I

I

o II"

! 2 1

00 7

____P~ I
Time (msec.)

(c) ACTD3.3

B I
7

4,2

g 1

0

"3 I
25....................60 115 1

Time (msec.)

(d) ACTD3.4 I

Figure 4.9 (continued): Dynamic PNN Prediction of Photodiode
Output Using the Same AM Excitation Signal
as that Used to Fit the Model

66

I7

I

-123I 11
-3.J

0 25 50 75 100 125 150
Time (nsec.)

(a) ACTD3.2

7

6,

4 0

3

I 0-1
-2'

P

0 25 50 75 100 125 150

Time (mec.)

(b) ACTD3.3

Figure 4.10: Dynamic PNN Prediction of Photodiode Output Using
Different AM Excitation Signal than was Used to Fit the
Model (viz., ACTD3.1)

67

I

7

0 I

.1.

-2 PD

-3'

0 25 50 75 100 125 150

Time (msec.)

(c) ACTD3.4

Figure 4.10 (continued): Dynamic PNN Prediction of Photodiode I
Output for AM Excitation Signals Different
than were Used to Fit the Model (viz., file
ACTD3.1)

I
4.5 Plant Control

The models identified above were next used in the feedforward control I
system illustrated in Fig. 4.11. In illustrating the technique below, the plant was
taken to be the static PNN model identified using the file ACTD3.1. The approach

then was to use the inverse of the identified model (i.e., PLANT-1), computed using
deconvolution, for each of the data sets in open-loop plant control. A unit step
input signal was used to evaluate the performance of the controller; these results are I
given in Fig. 4.12, where the step input and the system responses are plotted

together. Note that in Fig. 4.12(a), as expected, the desired and actual responses are
the same; this is because the convolution of the PLANT with its inverse,
PLANT*PLANT - 1 , by definition, is unity in this case. Due to differences in the

estimated PLANT 1 for the other data files, however, PLANT*PLANT- 1 is not unity
in the other cases. In actual application, steady-state (and transient) errors would be
reduced through on-line adaptation of the plant inverse model coefficients.

I
I

68

Photodoide Acoustic
(PD) MudulationA
Setpoint (AM) (D

Figure 4.11: Use of Direct Inverse Model in Feedforward Control
Experiment

2

1.6

1.4

>, 0.6

0.6

0.4

0.2
P

'jP
0 25 70 S 100 125 150

Time (rnsec.)

(a) ACTD3.1

2

1.6

1.6

1.4

2

0b2 ACT3.

Figure 4.12: Unit Step Input and Response of Direct Inverse
Controller.

69

I

2

1.: 'I

1.4

1.2I

0.6

04.I

0.2

0
2A5 75 10 1 5 1S

Time (msec.)

(c) ACTD3.3

2U

. _ _ __.2_ _ _ _ _ _ _ _ _

1.8

1.6

1.4

r 12

_ oI
S0.8I

0.6

0.4

0.2....................,.........I-s I
Time (n"sec.)

(d) ACTD3.4

Figure 4.12 (continued): Unit Step Input and Response of DirectI
Inverse Controller

I
70I

I
I

Appendix E provides further discussion of this application study.

i These results demonstrate the utility of PNNs for prediction and active
control of complex systems. Both static and dynamic networks successfully modeled
the dynamics of the process relating AM excitation to photodiode response. This
was accomplished using a relatively small amount of training data. Dynamic
networks were demonstrated to be superior to static networks both in terms of
accuracy and in parsimoniously modeling the process. This parsimony is a
consequence, in part, of infinite impulse response (IR) modeling, as contrasted with
finite impulse response (FIR) modeling. Parsimonious models are important
because fewer internal degrees of freedom provide for model robustness; moreover,
in on-line learning, performance surface complexity and adaptation time are both
related to the number of parameters that must be identified. In addition, dynamic
PNNs are applicable in modeling a larger class of systems than static models, as the
latter are limited to application in finite-memory systems. As a result, dynamic
PNNs may be used, for example, to model oscillators as naturally as they model

I finite-memory systems.

4.6 Modeling Synchronous Machines Using Static and Dynamic PNNs

In this work, which was performed under Defense Advanced Research
Projects Agency (DARPA) funding, static and dynamic polynomial neural network

I (PNNs) were used to model an electrical power system element as a preliminary
step leading to the development of methods for optimizing control of - power grid.
The eventual role for PNNs is to harmonize the differing and someLimes

I conflicting performance objectives of multiple machine controllers by tuning the
controller parameters pursuant to a system-level criterion. PNN techniques will
also be useful in power grid fault detection, isolation, estimation, and
reconfiguration (FDIEC).

In this initial investigation, a synchronous machine was selected as aIrepresentative element, since this type of machine is challenging to model and is
used as both a source of power (synchronous generator) and as a power system load
(induction machine). Static and dynamic PNNs were used to establish
computationally efficient state variable representations c: , synchronous generator.
The differential equations that describe synchronous machines are inherently
coupled and nonlinear. Small time steps are required to integrate numerically these
equations using conventional models, complicating fast predictions. If PNNs could
learn to perform this prediction as a form of pattern recognition, future states of the
machine could be forecast nearly instantaneously. The use of a neural network to
predict future states of a device is based on the notion that knowledge of the state,
x(t0), of the device at some time to, along with knowledge of the system inputs u(t) at
times later than to, allows the determination of the states at all future times [Brogan,
1974]. (The inverse is also true, i.e., knowledge of x(t 0) and x(tf), for tf > to, allows
determination of u(t) for to < t < t.)I

U

The PNN results will also be compared to the reduced-order analytic models m
of P. C. Krause, which neglect stator electrical transients. Although reduced-order
models can be used to speed the simulation of synchronous machines, they have
been shown to be conservative (and therefore inaccurate) estimators of system
instability [Krause, 19861. Although reduced-order models are sometimes adequate
for transient stability studies of large-scale power systems, they may not bem
sufficiently accurate for low-power.. small-system applications [Krause, 19861. In
addition, there are also questions concerning the relevance of reduced-order models
in distributed power system applications which, for survivability reasons, are the I
intended configuration for future ship power distribution networks.

There are several approaches that may be taken in using static PNNs (SPNNs)
for state prediction. (DPNN emulator models of the synchronous machine are also
demonstrated below.) One could consider training an SPNN to predict future states
of the machine, as shown in Fig. 4.13. In theory, under appropriate restrictive U
conditions, rather than forecasting a time increment r into the future, higher
accuracy may be achieved by forecasting only one step ahead, and then feeding the
output estimate(s) back as input(s) for an appropriate rL, . er of iterations. Note, I
however, that this approach requires that the SPNN be trained initially with prior
output measurements as inputs (equation error). The iterative use of output
estimates (rather thn output measurements) as inputs creates a strong potential for
instability in the output estimates. The proper approach for state prediction using
static net*,-rks is diagrammed in Fig. 4.14. Here multiple outputs of the SPNN are
employed, each corresponding to a specific prediction horizon.

Note that feedback of output estimates is the essential property that
distinguishes dynamic (recurrent) neural network synthes;s from static synthesis;
DPNNs are trained with the feedback connection already in place (output error),
thereby helping to avoid the problem of having unstable output predictions.

M (t) Static
Polynomial A

Neural b x(t desired)

Network I
(SPNN) I

X = (iqid, ikq ifd, ikd, Or, r)

= (T i, exfd, Vq. d' VO)

Figure 4.13: Use of a Static PNN to Predict State Variables of a
Synchronous Generator at a Future Time

72

I>

Near Term IL(O.01)- - - - -
Predictor (0.02)---- -- -----
PolynomialINeural
Network 1~(0-05)--------

IA
MeimTrI02 (.1
PrdcoI02
Poyoma

*-op Futr TmesI0)--

PrdcoI20
Poyoma
Nera

I 73

I
I

4.6.1 SPNN Prediction of Synchronous Machine State Variable Outputs

To establish databases for synthesizing PNNs to emulate a synchronous
machine, the coupled nonlinear differential equations that describe the machine
were first established; these are given in Tables 4.3 - 4.5. Equation parameters for
the hydro-turbine generator specified in Table 4.6 were used [Krause, 1986].

These equations were solved on a computer using a fourth-order Runge-
Kutta numerical integration algorithm; a step size of ten microseconds was
determined to be necessary to ensure numerical stability in all of the dynamic
simulations that were conducted. Databases were generated representing the
responses of the machine, acting as a synchronous generator, to the following
inputs: (1) a step increase in input torque, with the machine connected to an
infinite bus; (2) a three-phase short-circuit fault, with the machine connected to an
infinite bus; and (3) a step change in load from an infinite bus to an RL load. The
database included a single time series of each of these event scenarios. An SPNN
was then used to model this database, as shown in Fig. 4.13. The state variables
included the currents, iq(t), id(t), ikq(t) , ifd(t), ikd(t), the rotor electrical angular velocity,

(or(t), and the electrical rotor position, 0(t), all of which were transformed to the rotor
reference frame using Park's transformation. The inputs included the input torque,

Ti(t) , the external field voltage, eXfd (which was held constant for a given scenario),
and the Park-transformed voltages, Vq(t), vd(t), v0 (t), which define the load on the
synchronous generator.

I
I
I
I
I

I
I

74 I

Table 4.3: Nonlinear Coupled Flux Linkage Equations forI Synchronous Machine [Krause, 19861

Iq (0 [Vq~ 'V d + x(mq- 'Vq)]

I Wd = - [Vd + NV q + S(Vmd - Vd)]

II
I'Vkq = p [kq +X I'Vmq - 'Vkq)]

'Vfd - rd L"id ~(Vmd - Vfd)J

I 'kd = ()b[k + rkd (Wmd - 'Vkd)]

I where

Im = ai Xs 1k!)

I Vmdj = Xad(~ +R S Xfd 3;)

~X mq=(q -XIS + lq

ad (3md X1 X is d X lkd)

I 75

Table 4.4: Current Equations for Synchronous Machine [Krause,
1986]

1q =f -Vq'mq)

'dXII ~(4fd Vmd)

jo = . 1 1

'S I (k 'Vmq)

kq Ik-

4dXlfd ('fd - Mmd)

1kd 1 ('vd 'Vmd)

3C~kI

76I

Table 4.5: Definitions and Other Relationships

d

dt

(or -the electrical angular velocity

cob =the base electrical angular velocity

3 X a reactances

v voltages

3 i currents

-aflux linkages per second

r - resistances

Torque Equation

Te = 'Vdiq - Vq'd

Te- the output electromagnetic torque

Rotor Speed Equation

Ti Te J J(IP r

J moment of inertia,

P a number of poles

T i = the input torque

I
U
I
I
I 77

I

Table 4.6: Synchronous Machine (Hydro-Turbine Generator) U
Parameters Used in Simulations [Krause, 1986]

Rating: 325 MVA

Line-to-line voltage: 20 kV Power factor: 0.85
Poles: 64 (om = 112.5 r/min

Combined inertia of generator and turbine:

J = 35.1 x 106 J. sec2 or WR2 = 833.1 x 10' lbm. ft H = 7.5 sec

Parameters in ohms and per unit:

r. = 0.00234 K2, 0.0019 pu XIS = 0.1478 !2, 0.120 pu

Xq = 0.5911 K2, 0.480 pu Xd = 1.0467 £2, 0.850 pu

rfd = 0.00050 £2, 0.00041 pu Xfd = 0.2523 K2, 0.2049 pu

rkq = 0.01675 K2, 0.0136 pu Xkd = 0.01736 fl, 0.0141 pu
Xkq = 0.1267 2, 0.1029 pu Xkd = 0.1970 K2, 0.160 pu

I
I

An SPNN was trained to predict the output of various state variables and
other system variables in both the near- and far-term, using only the system state I
variables and inputs, as shown in Fig. 4.14. Typical results are given in Figs. 4.15 -
4.16. These figures demonstrate that even with an extremely limited database, static
PNNs can be trained to model a synchronous machine both accurately and rapidly; I
accuracy depends on the extent and variety of the training database. The output of
the PNN is essentially instantaneous; it may be used as a fast, accurate substitute for
numerical propagation of the detailed nonlinear differential equations.

II
I
I
I

78

I __

..--- -- ----- -- -F

1E - -

. actuald (auips) ..
(m)* I i...... cstimate

I !z~- I

I (a) PNN Prediction with 0.05 Sec. Forecast Horizon

o C - _ _,

.L.IiI
__

- - __ actual
id (aps)--- ---- -------- --u. esUnate

IS f I I .*5C 91 119 IDll t* ~ l 1 411 |C 51 1CCC 1 CCC I CCC | iC C

IS auiplc N umber

5 Sec

(b) PNN Prediction with 0.5 Sec. Forecast Horizon

I Figure 4.15: Polynomial Neural Network Model of Dynamic
Response of Hydro-Turbine Generator Connected to
Infinite Bus During Step Increase of Input Torque

I79

k m ~ ~ . ~ f~ I acual

id(~flh)S)- z - - estina~cI

-Isom

Sampjle Number

5 Sec.

(a) PNN Prediction with 0.05 Sec. Forecast Horizon

- - -- - - - - - actualI

id (,11111)s) -

estimate

S n ,. 25 40 **so. 660 fee 0

Sample Number

5 Sec.

(b) PNN Prediction with 0.5 Sec. Forecast HorizonI

Figure 4.16: Polynomial Neural Network Model of Dynamic
Response of Hydro-Turbine Generator Connected to

Infinite Bus During Short Circuit Fault at Terminals

80

4.6.2 DPNN Prediction of Synchronous Machine State Variable Outputs

Dynamic PNNs (DPNNs) were next investigated to test their ability to
emulate a synchronous machine. As shown in Fig. 4.17, separate linear DPNNs
were trained to model each of the state variables of the hydro-turbine generator.
The generator was assumed to be connected to an infinite bus. The state variables
included the currents, iq(t), id(t), ikq(t), ifd(t), ikd(t), the rotor electrical angular velocity,

O)r(t), and the electrical rotor position 8(t). In each DPNN model, the state variable
estimate being modeled was fed back as an input through time delays (also shown in
Fig. 4.17). (Note that when measurements rather than estimates are fed back,
essentially perfect modeling accuracy can be achieved; this accuracy, however, comes
at the expense of: (1) the requirement for sensors to provide such measurements
and (2) a loss of the capability to forecast future states of the machine in response to
arbitrary inputs, because intermediate measurements are not available.) Inputs to
the machine included the stator voltages, vq(t), Vd(t), and the input torque, Ti(t), of

r---------------------- - ------------ ------ I

W t Analytic FunctionA
(Linear or Nonlinear) Xi W

A A

E A (t _ At) . Xi (t)

xi (t - 2At)

"shift register

x =[i'q, id , ikq, ifd, ikd, (or, 8]

.ur=[Ti, Vq, v d]

Figure 4.17: Linear Dynamic Polynomial Neural Network Used to
Model Each State Variable

which only Ti(t) was varied arbitrarily. (Balanced conditions were assumed so that
results using DPNN models could be compared to the reduced-order models of P.C.
Krause where unbalanced conditions are ignored, as well as to the full nonlinear
differential equation model of the synchronous machine.) To train DPNNs to
model the general characteristics of a synchronous machine, broadband uniform

81

i

random white noise was used to simulate Ti(t). Specifically, Ti(t) was randomly

varied over the rated operating range of the machine, zero to 27.6 x 106 N*m, using
frequency components from dc to approximately 100 Hz,5 while recording the state I
variable outputs of the full differential equation model.

Figs. 4.18 - 4.20 illustrate the state variable responses of the hydro-turbine I
generator to a step in input torque of 23.5 x 106 N*m (0.85 rated). Fig. 4.18 is the
"truth" or full differential equation model, which captures accurately all of the
dynamics of the machine. This is the response that one would expect to obtain in
actual use of the machine. Fig. 4.19 depicts the response of the reduced-order model
of Krause, in which the stator electrical transients are neglected. This model
provides for more rapid computation of the state variables than the full differential
equation model, at the expense, however, of accuracy; specifically, the offset
transients and 60 Hz oscillations seen in Fig. 4.18 are not present in Fig. 4.19. One
important consequence of this is imprecision in determining the critical clearing
time of faults with use of the reduced-order model. In the case of three-phase short-
circuit faults, the critical clearing time is the maximum time duration that the fault
may remain in effect such that, when the fault is cleared, the machine will still
return to synchronous operation (i.e., remain stable). The reduced-order models
tend to underestimate critical clearing times [Krause, 1986].

Fig. 4.20 illustrates the step response of the DPNN synchronous machine
emulator which, as noted above, was trained on uniform random white noise.
Note that all state variables are modeled reasonably accurately. No attempt was
made to improve these results, either through the inclusion of nonlinearities in the
estimation models or additional time-delayed input or feedback variables, or by
increasing the duration of the training sequence. In addition, whereas generation of
the machine state-variable step response using the full differential equation model
is a relatively slow process due to the small step sizes necessitated by numerical i
integration, the DPNN output is provided much more rapidly (by several orders of
magnitude). For one-step-ahead prediction with the DPNN, each iteration requires
the computation of only a few dot products, which occurs virtually instantaneously. I
Prediction of state variables at arbitrary time steps into the future is accomplished by
iterative feedback of the output estimates and by setting the input variables to their
respective values. This is also an extremely rapid process.

The power of the DPNN approach, however, lies not only in its superior
speed relative to the full differential equation model, and its higher accuracy and I
speed relative to the reduced-order model; but also in the ability to synthesize linear

5 A second-order Butterworth low-pass filter was used to color the white noise samples, such that the i
passband was from dc to 100 Hz, the filter output was down 3 dB at 50 Hz, and down 20 dB beyond 100
Hz.

82

I
I

400W 2O i-L -

* 200-- 0-

-20000

0

-2OM. -60000 1-

-400-.A ~0 0 - 1 --

0 1 2 3 4 5 0 1 2 3 4

__ __ _ __ _ _,,_ _ __ __ __ _ _ _

time (se.) time (ec.)

40000O - - - - 7(X)0 - -WOOO

0000--

-20000~~a 4 0000 -----

0 NO-- E

0 1 2 3 4 5 0 1 2 5

time () tme

300D0 3169 - - Ut-a-

C63798

20000-

8377

-2 375.- - - -

210. 0t - In __

0 -

0- 1

0 1 2 3 4 0 1 2 3 4 5

time (c) tme(se

a~~~ Step in Inpthru f2. 06N (.5Rtd

I 20 83

I

q - reueIre d eue re

I 1I

1 1A, ---

0 1 2 3 4 5 1 2 3 4 5

---- t r -w. - -

4M iq-rixavd - edu rd erd

i 1-'i---

540000

A II

o 3 4 5 0 1 2 3 4 5

- dreducd arder - q reduced nwa.

C.

i 1a a

376.

0 1 2 3 4 2 0 1 2 3 4 5

I

15 -- -

10 -

.5. - - - - -

0 1 2 3 4 3
fte e.)

Figure 4.19: Reduced-Order (Stator Electric Transients are Neglected)
Differential Equation Model Response to a Step in Input

Torque of 23.5 X 106 N*m (0.85 Rated)

84

40 - 2- 3 0 - 2 4~

-40=0

-4O~ -- - -- 800XD -0

0 1 2 3 4 5 0 1 2 3 4 5
time (W-)time Iset)

"AIM

o 2 3 4

time - te. W I

850

C.

0 2 3 4 5 0 1 2 3 4 s

2000

0-

o i 2 3 4 50 2 3 4

tim (.) tm sc

Figur 4.0 "Estmate or esNt ynhonusMahneEmlao

585

m
m

and nonlinear prediction models inductively, based on process data collected off- or
on-line, either in laboratory experiments or in application settings This allows
power distribution system nodal elements, such as synchronous machines, to be
characterized without substantial a priori analytic modeling effort; then, using the
same process, these models can be adapted on-line to account for changes in, or
subtle differences between, individual machines. Such models may also be used
directly in fault detection, isolation, and estimation (FDIE) applications by
monitoring parameter values, or equivalently, model prediction-error residuals.
Reconfiguration can be performed, as necessary, subsequent to FDIE.

As mentioned earlier, the DPNN models used above to emulate the
synchronous machine were all linear; the inputs and delayed feedback values were
simply weighted by their corresponding model parameters and then summed.
Arbitrarily high accuracy may be achievable with such models by including
nonlinear terms, and possibly additional time-delayed input variables. Further
accuracy may also be achieved by using longer random noise training sequences. In
their present configuration, the DPNN models emulate accurately only the stable
operation of the synchronous machine, which is the operational regime on which
they were trained.

Because the DPNN models above were linear, they do not exhibit a critical
holding time for three-phase short-circuit faults. Simultaneously handling stable
and unstable responses requires that nonlinearity be included in the models, as only
wF nonlinearity is present can substantially different responses occur for small
changes in the input conditions. The capability of DPNNs to model instability can
be demonstrated using, for example, the instability induced by a small increase in
the holding time of a three-phase short-circuit fault, increasing it to a duration
greater than the critical holding time.

Below, results are given illustrating the capability of DPNNs to model this
nonlinear response. Specifically, in these experiments, a DPNN model having
linear and nonlinear polynomial terms up to degree two was used. With two time- I
delayed output feedback terms being used, this resulted in a model with 21
coefficients. The network, whose output represents the electrical rotor position state
variable, 6(t), was trained assuming an infinite bus and using three eight-second i
training-data sequences; these data included: (1) random input torque (Ti)
excitation, having an average value of 0.85 rated; (2) a five-second step response (0.85
rated), followed by a three-phase short-circuit fault that lasted 0.465 second before
being cleared; and (3) a five-second step response (0.85 rated), followed by a three-
phase short-circuit fault lasting 0.467 second before being cleared. (For the
synchronous machine under study, the critical holding time at 0.85 rated input
torque is 0.466 second; three-phase short-circuit faults lasting longer than 0.466
second will result in unstable responses. Unstable responses are defined by electrical
rotor positions, 8(t), exceeding 360 degrees.)

I
86 I

I
I

Fig. 4.21 illustrates the "true," 8(t), and "estimated," 9(t), responses to a 0.85
rated step-irput torque, which is interrupted by a short-circuit fault at t = 5 second;
the short-circuit fault is held 0.465 second before being cleared. This figure
represents a stable short-circuit response, and the DPNN models accurately both the

i qualitative and quantitative aspects of the response. Fig. 4.22 shows the results of a
similar experiment, where the short-circuit fault is instead held for 0.467 second
before being cleared; this evokes an unstable machine response, where the "true"
S(t) is seen to increase dramatically, eventually exceeding 360 degrees. Here the

DPNN model is seen initially to track the 8(t) response until the DPNN output
begins to oscillate and eventually saturate (this can better be seen in Fig. 4.23); the
DPNN model thus provides only qualitative evidence of the unstable response. For
unstable responses, however, it is probably not important to have high quantitative
accuracy, because one is interested in forecasting future states of the machine for the
purpose of taking immediate action. If predicted future states are unstable, one
would usually be interested in avoiding such behavior, rather than in quantifying it
to a high degree of accuracy. We see in these examples that the DPNN is able to
define very accurately the critical holding time, which is not true for reduced-order
models, which consistently underestimate the critical holding time, providing an
estimate of 0.424 second [Krause, 1986].

We note that these results are preliminary and are based on the use of a very
limited amount of training data. Additional quantitative accuracy may be possible
through the inclusion of other nonlinear terms, additional time-delayed input and
output variables, and longer training-data sequences. Although the DPNN model
was evaluated using a portion of the training data, these results are mainly intended
to demonstrate the capability of a nonlinear DPNN to capture simultaneously the
stable quantitative and unstable qualitative behavior of the synchronous machine.

I
I
i
I
I
i
I
* 87

00

n L

cu CA

LO

Eu

i

___ .3~A 88

CI

I -n

Oap U4)

- 0z

* S 89

bbI
C6I

EI

CD__ C

-o)
cd

-6 z

LOd LO

_ _ _ CV

c

900

I
I

S. CONCLUSIONS AND RECOMMENDATIONS

For both estimation and classification problems, the benefits of using artificial
neural networks include inductive learning, rapid computation, and the ability to
handle high-order and/or nonlinear processing. Neural networks reduce the need
for simplifying assumptions that use-a priori statistical models (such as "additive
Gaussian noise") or that neglect nonlinear terms, cross-coupling effects, high-order
dynamics, and so forth. Neural networks can provide accurate long-term
predictions and can also give inverse solutions for complex dynamics, such as the
values of initializing Lagrange multipliers for on-line, optimum, real-time, two-
point boundary-value guidance of flight vehicles. Moreover, through on-line
learning, neural networks can improve upon the performance achievable with
prior knowledge.

This report presents the foundations for a statistical-modeling perspective on
the inductive synthesis of static and dynamic (recurrent) artificial neural networks.
(Dynamic ANNs incorporate internal feedbacks and time delays.) Network nodal
element basis functions and output transformations are discussed. Information-
theoretic synthesis criteria for estimation and classification networks are introduced.
Algorithms are described for evolving the networks from their simplest possible
forms to just-sufficient levels of complexity, with or without internal feedbacks and
time delays, including algorithms for optimization at the node, layer, and network
levels. For static sigmoidal networks, the statistical bounds on approximation and
estimation errors are presented.

Applications of static and dynamic polynomial neural networks are detailed
and compared in this report for several estimation, prediction, and control
problems:

(1) prediction of behavior, both well-behaved and chaotic, of May's
deterministic nonlinear difference equation for population
sequences (Appendix C);

(2) prediction of photodiode outputs (indicative of combustion
quality) in response to changes in amplitude modulation levels in
an acoustically-driven turbopropulsion combustion process
(Section 4 and Appendix E). This study includes a comparison with
classical Wiener-Volterra techniques;

(3) two-point boundary-value guidance of a tactical air-to-air missile
(Appendix D). Accuracy, simplicity, robustness, and noise
sensitivity of static and dynamic neural networks are compared;
and

91

I

(4) high-speed predictions of hydro-turbine generator responses to
input and load changes, including estimation of clearing time
(before instability) for an output short-circuit fault. i

Other concurrent work, not reported herein, has also successfully applied
dynamic polynomial neural networks in structural acoustics [Parker, Poor, et al.;
1991]; has made and is making extensive applications of neural networks to
detection and classification of acoustic transients in undersea warfare (DARPA
DANTES program), with fast ANN updating in the at-sea environment [Barron,
Parker, Ward, Abbott, and Jordan; to be reported in 1993]; and is in-progress on
several complex multivariable control and diagnostic problems defined by the U.S.
Navy. i

Increasingly, the focus in neural network applications is on meeting
requirements that are best satisfied using dynamic ANNs. In summary, dynamic
networks offer important advantages in that they:

" requiie, in general, fewer internal degrees of freedom, resulting in
more robust networks;

" readily process time-varying inputs (prior measures of the input
vectors are retained automatically where needed);

" may reduce the need for intensive feature-extraction preprocessing
or may provide the means for feature computation;

• as with static networks, are well-suited to on-line adaptation using
recursive optimization algorithms;

" readily constitute infinite impulse response (IIR) filters in addition
to providing finite impulse response (FIR) filters; and

* as with static networks, can use information-theoretic modeling
criteria to build a network structure from zero connections to just-
sufficient complexity.

A prototype synthesis algorithm, DynNet, has been created for dynamic I
estimation polynomial neural networks. It complements existing, mature
algorithms (ASPN and CLASS) intended for syntheses of static estimation and
classification networks.

II
i

92I

I

Further tool development is needed to:

(1) obtain dynamic classification ANN synthesis capabilities. This will
be useful for automatically capturing spatio-temporal information
in classifiers (including detection, discrimination, and diagnostic
systems), thereby possibly avoiding the need for time-frequency or
time-space front-end transformations. Either time-variables or
time-varying features could be used as inputs;

(2) refine the static classification ANN synthesis algorithm to
incorporate structure learning (as in ASPN);

(3) refine all of the static and dynamic synthesis algorithms to take
advantage of the projection-pursuit protocol [Friedman and Tukey,1974; Friedman and Stuetzle, 1981] as discussed in Section 2;

(4) produce an integrated synthesis tool for off-line static and dynamic
ANNs for estimation and classification;

(5) provide on-line mechanizations of the above synthesis algorithms
(including structure learning) and provide off-line and on-line
mechanizations of counterpart adaptation algorithms (without
structure learning).

93

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

94 I

m

I 6. REFERENCES

Akaike, H., "Information theory and an extension of the maximum
likelihood principle," Proc. Second Int'l. Symp. on Information
Theory, B.N. Petrov and F. Csaki (Eds.), Akademiai Kiad6 Budapest, pp.
267-281, 1972.

Antsaklis, P.J., "Neural networks in control systems," IEEE Control Systems
Magazine, Vol. 12, No. 2, April 1992.

Barron, A.R., Properties of the Predicted Squared Error: A Criterion for
Selecting Variables, Ranking Models, and Determining Order,
Adaptronics, Inc., McLean, Virginia, 1981.

Barron, A.R., "Predicted Squared Error: A Criterion for Automatic Model
m Selection," Self-Organizing Methods in Modeling: GMDH Type

Algorithms (S.J. Farlow, Ed.), Marcel Dekker, Inc., New York, Chap. 4,pp. 87-103,1984.

Barron, A.R., Logically Smooth Density Estimation, Ph.D. Dissertation, Dept.
of E.E., Stanford University, Palo Alto, California, 1985.

Barron, A.R., "Statistical properties of artificial neural networks," Proc. IEEE
19P9 Conf. on Decision and Centrol, Tampa, Florida, December 13-15,
1989.

Barron, A.R., "Complexity regularization with applications to artificial neural
networks," Proc. NATO ASI on Nonparametric Functional Estimation,
Spetses, Greece, G. Roussas, Ed., Kluwer Academic Publishers,
Dordrecht, Netherlands, August 1-10, 1990.

Barron, A.R., "Approximation and estimation bounds for artificial neural
networks," Computational Learning Theory: Proc. of 4th Ann.
Workshop, Morgan Kaufman, 1991.

Barron, A.R., "Universal approximation bounds for superpositions of a
sigmoidal function," Submitted to IEEE Trans. on Information Theory,
1991.

Barron, A.R. and R.L. Barron, "Statistical learning networks: A unifying
view," Proc. 20th Symposium on the Interface: Computing Science and
Statistics, Reston, Virginia, April 1988.

Barron, A.R. and X. Xiao, "Discussion on multivariate adaptive regression,"
Annals of Statistics , Vol 19, No. 1, pp. 67-82, 1991.

95

n
n

Barron, R.L., "Adaptive transformation networks for modeling, prediction,
and control," Proc. Joint Nat'l. Conf. on Major Systems, IEEE/ORSA,
October 25-26, 1971.

Barron, R.L., "Guided accelerated random search as applied to adaptive array
AMTI radar," Proc. Adaptive Antenna Systems Workshop, Naval
Research Laboratory, Washington DC, 11-13 March 11-13 1974.

Barron, R.L., "Theory and application of cybernetic systems: An overview,"
Proc. 1974 NAECON, pp. 107-118, May 1974.

Barron, R.L., "Learning networks improve computer-aided prediction and
control," Computer Design, August 1975.

Barron, R.L., A.N. Mucciardi, F.J. Cook, J.N. Craig, and A.R. Barron,
"Adaptive Learning Networks: Development and Application in the
United States of Algorithms Related to GMDH," Self-Organizing I
Methods in Modeling: GMDH Type Algorithms (S.J. Farlow, Ed.),
Marcel Dekker, Inc., New York, Chap. 2, pp. 25-65, 1984.

Barron, R.L. and D.W. Abbott, "Use of polynomial networks in optimum
real-time, two-point boundary-value guidance of tactical weapons,"
Proc. 1988 Military Computing Conference, May 3-5, 1988.

Barron, R.L., D.W. Abbott, et al., Trajectory Optimization and Optimum Path-
to-Go Guidance of Tactical Weapons: Vol. I - Theory and AIWS
Application, August, 1988; Vol. II - Closed-Loop OPTG Guidance of Mk
82 Glide Weapon, September 1987; Vol. III - Open-Loop Trajectory
Optimization of Skipper Boost-Glide Weapon, June 1988; Vol. IV -

Calculation of Lagrange Multipliers of Vertical-Plane Maximum-Range
Trajectories of 11:1 LID Boost-Glide AIWS, January 1989, Barron
Associates, Inc. Final Technical Report for HR Textron Inc. under U.S.
Naval Weapons Center contract N60530-88-C-0036.

Barron, R.L., R.L. Cellucci, P.R. Jordan, III, N.E. Beam, P. Hess, and A.R.
Barron, "Applications of polynomial neural networks to FDIE and
reconfigurable flight control," Proc. 1990 NAECON, May 1990. I

Barron, R.L. and R.L. Cellucci, Optimum Management of KEW Divert Energy,
Barron Associates, Inc. Final Rept. for SDIO and Air Force Armament I
Laboratory, Contract F08635-90-C-0383, January 24, 1991.

I
I

96 I

I/

Barron, R.L., D.W. Abbott, R.L. Cellucci, and D.E. Blackman, Neural Network
Flight Control System Design for High-Agility Air Combat, Barron
Associates, Inc., Final Report for Air Force Wright Laboratories,
Contract F33615-90-C-3614, April 15, 1991.

I Barron, R.L., P. Hess, P.R. Jordan, III, and C.M. Hawes, "Diagnostic Abductive
and Inductive Reasoning for Flight Control, Effector FDIE and
Reconfiguration, Part I: Synthesis Algorithms and Results for Pre-
Trained FDIE, Part II: Recursive Estimation of Aircraft Parameters
Using Neural Network Calculation of Impairment Probability," Barron
Associates, Inc. Final Report for Flight Dynamics Directorate, Wright
Laboratory (AFSC), under Contract F33615-88-C-3615, WL-TR-91-3108,
March 1992.

Breiman, L. and J.H. Friedman, "Estimating optimal transformations for
multiple regression and correlation," J. Amer. Statist. Assoc., Vol. 80,
pp. 580-619,1985.

Brogan, W.L., Modern Ccntrol Theory, Quantum Publishers: New York,
1974.

Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics, Capital City Press, Montpelier,
Vermont, 1992.

Devroye, L., A Bibliography on Random Search, Technical Report SOCS-79.9,
McGill University, May 1979.

Efron, B., The Perceptron Correction Procedure in Nonseparable Situations,
Rome Air Dev. Center Tech. Documentary Report, RADC-TDR-63-533,
February 1964.

Elder, J.F. IV and R.L. Barron, "Automated design of continuously-adaptive
control: The 'super-controller' strategy for reconfigurable systems,"
Proc. 1988 American Control Conference, June 15-17, 1988.

Farley, B.G. and W.A. Clark, "Simulation of self-organizing systems by digital
computers," IRE Trans. on Inform. Theory, Vol. PGIT-4, pp. 76-84, 1954.

Fisher, R.A., "The use of multiple measurements in axonomic problems,"
Annals of Eugenics, Vol. 7, pp. 179-188, 1936.

Friedman, J.H., "Fitting functions to noisy scattered data in high dimensions,"
Proc. 20th Symposium on the Interface: Computing Science and
Statistics, Reston, Virginia, April 1988.

97

m
I

Friedman, J.H. and J.W. Tukey, "A projection pursuit algorithm for
exploratory data analysis," IEEE Trans. on Computers, Vol. 23, pp. 881-
889, 1974.

Friedman, J. H. and W. Stuetzle, "Projection pursuit regression," J. American I
Statistical Assoc., Vol. 76, pp. 817-823, 1981.

Friedman, J.H., "Multivariate adaptive regression splines," Annals of I
Statistics, Vol 19, No. 1, pp. 1-66, 1991.

Gabor, D., "Communication theory and cybernetics," Trans. of IRE, Vol. CT-1, m
No. 4, p. 19, 1954.

Gabor, D., P.L. Wilby, and R. Woodcock, "A universal non-linear filter,
predictor and simulator which optimizes itself by a learning process," J.
IEE, paper received October 17, 1959.

Giles, C.L. and T. Maxwell, "Learning, invariance, and generalization in high-
order neural networks," Applied Optics, Vol. 26, No. 23, pp. 4972-4978, I
December 1, 1988.

Gilstrap, L.O. Jr., "An adaptive approach to smoothing, filtering and
prediction," Proc. 1969 NAECON, pp. 275-280, 1969.

Gilstrap, L.O. Jr., "Keys to developing machines with high-level artificial
intelligence," ASME Design Engineering Conf., ASME Paper No. 71-
DE-21, April 19-22, 1971.

Gilstrap, L.O. Jr., S.R. Goldschmidt, and J.F. Elder IV, Estimating Signals with
Polynomial Filters, Barron Associates, Inc. Interim Technical Report
for Century Computing, Inc. under Purchase Order 5035 of F33615-84-C-
3609, March 6, 1986.

Gleick, J., Chaos--Making a New Science, Penguin Books, New York, 1988. I
Goldschmidt, S.R., R.L. Barron, and J.F. Elder IV, Super-Controllers: Adaptive

Control with APN's, Barron Associates, Inc. Task Final Report, Part II
for Universal Energy Systems, Inc. under Task Order 85-10 of F33614-83-
C-3000, February 28, 1986.

Hansen, R.J. and E.W. Hendricks, "Active control of complex physical
systems: An overview," to .,e presented at the June 1992 International
Gas Turbine Symposium.

Hastie, T., R. Tibshirani, "Generalized additive models (with discussion)."
Statist. Sci., pp. 297-318, 1986.

98 m

1
I

H Hebb, D. 0., The Organization of Behavior, John Wiley & Sons, Inc., New
York, 1949.

Hecht-Nielsen, R., Neurocomputing, Addison-Weslay Publ. Co., pp. 183-191,
1989.

Hess, P. and D.W. Abbott, Multidimensional Search and Optimization with
the OMNIsearch Algorithm, Barron Associates, Inc. Informal
Documentation, Century Computing, Inc. Purchase Order 5035 under
F33615-84-C-3609, August 1988.

Ivakhnenko, A.G., "The group method of data handling - A rival of
stochastic approximation," Soviet Automatic Control, Vol. 1, pp. 43 -
55, 1968.

Ivakhnenko, A.G., "Polynomial theory of complex systems," IEEE Trans. on
Systems, Man, & Cybernetics, Vol. SMC-1, No. 4, pp. 364-378, October
1971.

Krause, P.C., Analysis of Electric Machinery, McGraw-Hill: New York, 1986.

Kuan, C.-M. and K. Hornik, "Implementing recurrent networks", Proc. of the
Seventh Yale Workshop on Adaptive and Learning Systems, Yale
University, pp. 64-68, May 1992.

Kuan, C.-M., K. Hornik, and H. White, "Some convergence results for
learning in recurrent neural networks," Proc. of the Sixth Yale
Workshop on Adaptive and Learning Systems, Yale University, pp.
103-109, 1990.

Lee, R. J., "Internal Circuitry of a Reron," privately published, Lib. of Congress
Card TK 7882.C5L4, June 13, 1955.

Lee, R. J., "Generalization of learning in a machine," Preprints of Papers
Presented at Fourteenth Natl. Meeting ACM, pp. 21-1-21-4, September
1-3, 1959.

Lorentz, G. G., The 13th Problem of Hilbert, in Mathematical Developments
Arising from Hilbert Problems, F. E. Browder (Ed.), American
Mathematical Society, Providence, Rhode Island, 1976.

Mallows, C.L., "Some comments on Cp," Technometrics, Vol. 15, pp. 661-675,
1973.

99

I

McCulloch, W.S. and W. Pitts, "A logical calculus of the ideas immanent in
nervous activity," Bull. Math. Biophys., Vol. 5, pp. 115-133, 1943.

Minsky, M.L. and S. Papert, Perceptrons: An Introduction to Computational
Geometry, M.I.T. Press, Cambridge, Massachusetts, 1969.

M, ddes, R.E.J., R.J. Brown, L.O. Gilstrap, Jr., R.L. Barron, et al., Study of
Neurotron Networks in Learning Automata, Adaptronics, Inc., AFAL-
TR-65-9, February 6, 1965.

Mucciardi, A.N., "Neuromime Nets as the Basis for the Predictive
Component of Robot Brains," Cybernetics, Artificial Intelligence, and
Ecology (Robinson, Ed.), Spartan Books, 1972.

Narendra, K.S and K. Parthasarathy, "Identification and control of dynamical
systems using neural networks," IEEE Trans. on Neural Networks, Vol.
1, No. 1, March 1990.

Parker, Jr., B.E., R.L. Cellucci, D.W. Abbott, Active Control of Complex
Systems via Dynamic Neural Networks: Combustion Processes in
Propulsion Systems, Contract N00014-89-C-0137, TPR 3, April 1991.

Parker, Jr., B.E., H. V. Poor, et al., Adaptive Nonlinear Polynomial Neural
Networks for Control of Boundary Layer/Structural Interaction, Barron
Associates, Inc. Final Technical Report for NASA Langley Research I
Center under Contract NAS1-19271, August 15, 1991.

Pearlmutter, B.A. Dynamic Recurrent Neural Networks, Technical Report
CMU-CS-90-196, School of Computer Science, Carnegie Mellon
University, 1990.

Pineda, F.J., "Generalization of back-propagation to recurrent neural
networks," Physical Review Letters, 59, pp. 2229-2232, 1990.

Rissanen, J., "A universal prior for integers and estimation by minimum
description length," Ann. Stat., Vol. 11, No. 2, pp. 416-431, 1983.

Rosenblatt, F., "The Perceptron," Cornell Aeronaut. Lab. Rept. VG-1196-G-1,
January 1958.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning Internal
Representations by Error Propagation," in D.E. Rumelhart and J.L.
McClelland, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. 1: Foundations, M.I.T. Press,
Cambridge, Massachusetts, pp. 354-361, 1986.

100 I

Schwarz, G., "Estimating the dimension of a model," Ann. Stat., Vol. 6, No. 2,
pp. 461-464, 1977.

Specht, D.F., "Generation of polynomial discriminant functions for pattern
recognition," IEEE Trans. on Electronic Computers, Vol. EC-16, No. 3,
pp. 308-319, June 1967.

Shrier, S., R.L. Barron, and L.O. Gilstrap, "Polynomial and Neural Networks:
Analogies and Engineering Applications," Proc. IEEE First Int'l. Conf.
on Neural Networks, Vol. II, pp. 431-439, June 21-24, 1987.

Shynk, J.J., "Adaptive HR filtering," IEEE ASSP Magazine, Vol. 6, No. 2, pp. 4-
21, April 1989.

Sutton, R.S., A.G. Barto, and R.J. Williams, "Reinforcement learning is direct
adaptive optimal control," IEEE Control Systems Magazine, Vol. 12,
No. 2, April 1992, pp. 19-22.

Werbos, P.J., "An overview of neural networks for control," IEEE Control
Systems Magazine, Vol. 11, No. 1, pp. 40-41, January 1991.

Williams, R.J., and D. Zipser, A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks, ICS Report 8805, Institute
of Cognitive Science, University of California at San Diego, 1988.

10

II

APPENDIX A: Static Polynomial Neural Network Synthesis Algorithms

A.1. ASPN Facility

The ASPN Facility synthesizes static estimation neural networks having no
internal feedback paths, no internal time delays, no post-transformations and, in
general, a polynomial basis function. The main purpose of ASPN is to create a
neural network that estimates the value(s) of a dependent variable or variables
when interrogated with an input observation vector. In synthesizing a network,
ASPN selects the most relevant inputs from a list of candidates, determines the
most appropriate structure (connectivity) of the network, determines the best
algebraic function to use at each node, and optimizes the weights in the network.
With ASPN, the network structure evolves from the simplest form (a single input
connected to the output) to a feedforward network having just-sufficient complexity
for the database under consideration. Because ASPN synthesizes a static network,
the network output vector is a single-point transformation of the input data.

Each ASPN network is a combination of nodal elements, where each nodal
element may contain a series expansion made up of terms that are a subset of the
complete Kolmogorov-Gabor (KG) multinomial (either pre-defined or analyst
defined). A number of subsets of the complete KG multinomial are pre-defined in
ASPN; these subsets, the "single," "double," "triple," and "linear" (affine) are used
for one, two, three, or n inputs, respectively:

y =0 0 + 1 xi +0 2x + 0Ox ("single") A:I

y = i 2xj 3 ixJ xi + esx? ("double") A:2

+ O6x + 0 x3

y 00 + 61x i + 02xJ + 03xk + 04xix J + (sxix k ("triple") A:3

+ O0 x + 0 x? + 0 ?+ 0 x2x + 0 x x
+ 6xJXk 07x1 + 09 + 10x

+ 0 x! + 0 + + +

n

y = 00 + I eixi ("linear") A:4
i=l

In ASPN, the analyst may change the terms contained in a nodal element
simply by specifying a different set of indices corresponding to different terms in the
complete KG multinomial. Exponential (Eq. A:5) and cube-root (Eq. A:6) elements
are also available in ASPN. These transcendental elements, as well as sigmoidal

A-1

I

functions, offer other forms of nonlinearity that are helpful in some applications. n
However, experience has shown that Eqs. A:5, A:6, and sigmoidal functions are
rarely selected by ASPN during model syntheses.

y = 0o + 1e (O2xi) (exponential) A:5

y = 00 + 0 (xi - 02)' 3 (cube-root) A:6

One method used by A SPN to keep the number of coefficients (9) from
exploding exponentially is to employ subsets of the element terms. Eq. A:3 has the
largest number of coefficients of any nodal-element series expansion defined in
ASPN (except, Eq. A:4 when n > 12). Even with an interaction order of three, a limit
of three inputs, and a maximum degree of three, the function in Eq. A:3 is still
sparse (has a low density expansion), because it is lacking terms of the form 0 14 xxj.

The removal of such terms from the function definition allows ASPN to be more
efficient in use of computing resources and leads to more robust models, as the
nodal elements do not have excessive internal degrees of freedom.

Using ASPN, the model for each dependent variable usually consists of a
network of polynomial elements arranged in layers (see the representative network I
in Fig. A.1). y, and Y2, the two outputs of the example network, are simultaneous
estimates for two dependent variables. The sub-network for y1 is three layers deep
and employs six elements and six original inputs. The Y2 sub-network consists of
only two elements, one on each of its two layers, and employs four original inputs.
Note that there is cross-coupling, or sharing of results, between the sub-networks,
and only six of the original twelve or more candidate inputs are used. As with all
ASPN-synthesized networks, the inputs pass through a normalization stage (N)
before introduction into the network, and the dependent variable estimates are re-
scaled, i.e., unitized (U) at their outputs.

For each layer of the ASPN-synthesized network, a succession of the various
nodal functions, with different combinations of inputs, is fitted and scored. Fitting I
consists of computing the optimum values for the candidate element coefficients
using a batch least-squares technique. The candidate element is fitted in such a way
that it attempts to solve the entire input-output mapping problem by itself
[Ivakhnenko, 1968 and 1971]. A candidate element is scored using a model selection
criterion that considers a loss function and a complexity penalty (see Section 2). The I
model selection criterion used by ASPN is either the predicted squared error, PSE;minimum description length, MDL; or predicted classification error, PCE.

I

A-2

X2

X 12 16 IF

Figure A.: Sample Polynomial Network

In its simplest form, PSE is written

14

PSE =FSE+--il A:7

in which a 2 is a prior estimate of the true error variance that does not depend on the
model being considered, K is the number of parameters within the model, N is the
number of exemplars in the training database, and FSE is the fitting squared error
(i.e., the mean squared error):

n

i=l1

A

where f(, 0) is the network output.

PSE is a very conservative criterion provided the fixed a2 exceeds the true
error variance, a condition readily verified upon completion o model synthesis.
This conservatism is important in engineering and predictive estimation
applications. PSE is not dependent on the shape of the error distribution.

A-3

I

The MDL criterion is based on Shannon coding and follows the equation I

MDL = Ceiling [BN + log (2ne FSE Nc)J bits, A:9

where B is the number of bits that would be used to encode each observation error
(say, 16), N. is N raised to the (K+1)/N power, and the Ceiling function refers to use I
of the next-highest integer. Use of the MDL criterion is most appropriate if the
shortest explanation of known data is believed to provide a good description of
statistically similar data in the future.

The final model selection criterion available in ASPN is PCE:

PCE= 1.0 - N H lYi-YiI + CuK A:10
i=lI

where: I
0 ifYi-_iI <CTOl

H= 0 if lYi-YIl > A:ol

Yi is the true output given the ith input vector i. (For PCE, true outputs must
be positive.)

Yi is the candidate model output given input vector i

CTOI is the classification tolerance (default value 0.5) I
CMult is the complexity penalty multiplier (nominally 1.0).

When all possible candidate elements have been fitted and scored, a given I
layer is constructed by selecting the "best" elements, as gauged by the model
selection criterion. The maximum number of "best" elements allowed in each layer
and the maximum number of layers are specified by the analyst. To improve
performance (minimize the modeling criteria), elements may be joined in series
and in parallel, creating a feedforward network. The inputs for the next layer I
include the previous layer outputs and the network inputs. Since only the best
elements or nodes are retained in each layer, successive layers can only improve or
maintain the performance of the previous layer. The growth of the network is
halted when the model ceases to improve with the addition of new elements, or the
maximum number of layers has been reached.

At the completion of network construction, the network may include many
elements that do not contribute to the final output (are not used in the

A-4 I

I
I

transformation of the input into the network output). ASPN purges the unused
elements from the network, and the final model is output in forms appropriate for
both the user and other ASPN Facility utility programs.

The ASPN Facility utilities, as described below, can be used to improve the
model coefficients, interrogate the model on unseen data, and provide variations in
the form in which the model is displayed or executed.

I The GLOBALO utility optimizes the parameters of a multinomial model,
leaving the model structure unchanged, to minimize fitting error over the
optimization data set (which may not be the same data with which the model was
synthesized). GLOBALO performs a global, multivariate search. The fitting error
criterion, minimized to determine the optimum values of the coefficients, is based
on a user-defined function of errors, such as minimum squared error or minimumI absolute error. Using a parameter space search algorithm, GLOBALO tries various
parameter values over the data observations that are read until an iteration limit is
reached. Lastly, the best coefficients are inserted into the network structure and a
new, optimized, model is output.

The IMP utility implements (encodes and evaluates) the neural network
model generated by the ASPN program. IMP provides two main options to the
user, known as Create and Evaluate. With the Create option, IMP creates an output
file in the form of a FORTRAN or C routine which implements the model; that is,
IMP provides a subroutine or function which provides network model outputs
given a vector of input values. With the Evaluate option, IMP interrogates the
ASPN model using an evaluation data base and outputs both detailed and summary
results and statistics.

Because the output vector of an ASPN-synthesized network is a single-pointI- transformation of the input data, models created by ASPN can be alternatively
represented in an algebraic, rather than network, form. The XPRESS utility
expresses an ASPN model entirely in terms of the original input variables; that is, it
expands the network to compute algebraically the "function of functions" it
represents. XPRESS can also graph the network, derive the derivatives of the
output polynomial with respect to any input, and interactively display the expanded
equations in a variety of formats.

A.2 CLASS

CLASS synthesizes static polynomial classification networks. The CLASS
algorithm uses the minimum-logistic-loss criterion derived for a C-class problem,
where C is the number of outputs (classes), to classify input observation vectors.

The structure of a CLASS-synthesized classifier network is a static feedforward
network of polynomial elements and a fixed, static logistic transformation
(probability computation) of the network outputs (see Fig. A.2). In practice, the

A-5

I

network structure is fixed in advance, and each node usually contains the same
polynomial equation (core transformation). Since the probability computation
outputs always sum to unity, only C-1 nodes are synthesized to solve a C-class
problem. Each of the C-1 nodes (sub-networks) returns essentially unbounded
values (- to - -) that indicate the probabilities of membership in their respective
classes or in an arbitrary baseline class. The Cth node is defined to be identically zero.

fl
Linear or
Nonlinear

Polynomial Node

A

Linear or X
Nonlinear

Dat 1Probability p(ClasSelect Class

Computation Maximum U
Nonlinear) pProbability

NonlinearPolyinomial NodeI

fc - 0 I

I
Figure A.2: The General Structure of the CLASS Network

The series expansion of a CLASS-synthesized network is a polynomial having
an initial structure (before carving) that is specified by the analyst. Possible nodal
element structures are subsets of the KG multinomial and are defined as:

nI
y = 0 + iXi ("linear") A:12

y = 00 + 01x + 02x2 + 03x3 + + 02x2 ("additive") A:13
+ 0 3x4 + ... I

A-6

I

= 0 + 0x 1 + 02x2 + O3x3 + O4x2 + 05x2x1 ("complete") A:14

I + + 0 x2 + O8x~x + X +

y =00 + x1 + 2x2 +3X 3 + 4xx 2 + e5xlx 3 ("multilinear")

+ 06x2x3 + 07xlx 2x3 + ...

CLASS allows the analyst to specify the degree of Eqs. A:13 and A:14. CLASS also
allows arbitrary multinomial (multivariate polynomial; i.e., any combination of Eqs.
A:14 and A:15) node structures to be specified and named in a node file. All input
data components W are submitted to each node. Therefore, to prevent the number
of coefficients from exploding exponentially, it is important for the analyst to keep
the degree of the specified polynomial reasonably low.

CLASS can fit the entire network simultaneously, can build the network
parameters one at a time, or can build the parameters in groups. Fitting all the
parameters simultaneously is straightforward. (The search algorithm is applied to
all of the parameters.) However, to build parameters individually or in groups, a
criterion that trades off complexity and fitting error must be employed. The model
selection criterion for synthesis of a CLASS network is given by

j= (Fitting Error) + (Complexity Penalty)

= n di + 1 A:16

where Q is the number of non-zero parameters in the network.

The complexity constraining term

CMU1tQ A:17
n

penalizes networks with large numbers of coefficients to discourage overfitting.
The complexity multiplier, CMuIt, provides a way to increase or decrease the
complexity penalty a priori. To implement the Akaike Information Criterion, CMult
should be set to unity.

The multiclass logistic-loss function, di(), evaluated at the ith observation, is

di() = d(yi,(.i; =-))---i- f(AiA) + logec(exp Qk(Xi;)) A:18

A-7

i
i

The fitting error is normalized by log.(C). When the parameters are all
identically zero (indicating a no-knowledge model), the fitting error is 1.0.

Table A.1 defines the symbols used in the multi-class logistic-loss function.

Table A.l: Mathematical Symbol Descriptions

Symbol Description

J The objective function. The I
normalized average of the loss
function over n observations and the
complexity penalty.

d(-i, i) The C-class logistic loss function
evaluated on observation i of the data.

The vector of input data for
observation i.

Xi The modeling output vector for
observation i. This vector has only one
component that is unity (the rest are
zero). The non-zero component
indicates the actual class.

-x , The vector of sub-network outputs.
The range of these outputs is
essentially unbounded.

The list of all parameters in the
classifier network (all of the B.'s
combined).

The parameters in node k.

i
I
I
I

A-8

To interrogate the CLASS-synthesized network, the input data are fed intoA A

each of the discriminating nodes, f 1 through f C-* The outputs of these nodes are
unbounded. The C probabilities of class membership are then computed using

exp f(X 1)
p(classklx) = c ; 1 _ I _ C A:19

exp (f k~ W k))
k=1

A

Note that fc is identically zero. The distribution of the C probabilities is determined,
and the corresponding class is then chosen.

Because minimization of logistic loss involves a nonlinear transformation
from the classifier weights to the estimated probabilities, least-squares adjustment of
the weights is inappropriate. A Levenberg-Marquardt (LM) search may be employed
(see Appendix B). LM is a nonlinear regression technique that exploits the
derivative information that is known analytically.

The constrained minimum-logistic-loss criterion, which is explicitly designed
for classification problems, provides performance superior to classifiers fitted using
estimation criteria. Estimation networks place emphasis on estimation accuracy;
optimum minimum-logistic-loss networks instead place emphasis on maximizing
the likelihood of correct class discrimination.

A-9

I
I
IAPPENDIX B: Optimization Techniquest

B.1 Description of the Guided Random Search Algorithm

The Guided Random (GR) Search Algorithm is a random optimization search
intended primarily for the initial and final stages of numerical searches. It has
multimodal search capabilities, but these are not as powerful as in GARS, which is
described in Section B.2. The basic GR algorithm is quite simple, yet it embodies
many qualities of other, more sophisticated, search algorithms.

G R uses an "amoeba," which is a set of search points, typically five,
comprising the current information to be used by the search algorithm. The amoeba
moves through the search space by adding and removing points from its search set

in the following manner:

1. Remove worst point from the amoeba.

2. Add most recent point to the amoeba.

3. Recompute mean and standard deviation of the amoeba for each search
dimension.

4. Determine the next search point to test using the following vector
equation:

s= 2Z + speed. (-an) B:I

2!+1 = ag + dispersion. N[ag,an. B:2

where n denotes the iteration number and:

a. is the mean of the goal region,

2Z is the location of the best point in the amoeba,

g. is the vector mean of the five amoeba points,

X.+, is the next search point to be tested,

t Reprinted from Barton, Abbott, Cellucci, and Blackman [1991].

B-1

I
I

on is the vector standard deviation of the five amoeba points,

N [Us, on] is a Gaussian random vector of mean a. and standard I
deviation g, and

speed and dispersion are search parameters (constants) set by the •
analyst, each typically to unity.

Thus, the strategy of the amoeba search is very simple: move from the I
centroid of the amoeba beyond the point with the best score. The distance beyond
the current best point to use, the "goal" region, is proportional to the distance
between the best point and the amoeba centroid. With speed set to unity, the mean
of the goal region for the next search point will be collinear with 2 and u., at a
distance (2 - a) beyond 2Z. The shape of the goal region is determined by the I
standard deviations of the current amoeba.

If an amoeba repeatedly receives good points in a particular direction it will I
stretch out along that direction and thus begin to accelerate. (See Figure B.1) If an
amoeba comes across an area representing a minima, it will surround that region
and shrink, causing it to focus on that region or, when necessary, "thread the
needle" and re-expand after getting through that portion of the search space. I

o mean of amoeba
0* [x point with best score

0 a "[rpoint with worst score
goal egion

Figure B.I: Sample GR Amoeba Acceleration U
To initialize the GR search, initial values and standard deviations for each

search dimension are specified.

I

5-2

I
I

B.2 Description of the Guided Accelerated Random Search Algorithm

The Guided Accelerated Random Search (GARS) algorithm is a random
optimization search intended primarily for the mid-game stage of search. GARS is a
powerful multimodal search that avoids trapping in local minima of the
performance surface. It is also effective when there is a shallow score slope to be
traversed, in which case the GARS acceleration/deceleration capabilities quickly find
the local minimum.

To govern random experiments, the GARS algorithm uses the following
* vector equation:

2 l = 2Z + dispersion. N[O, g.] B:3

I where 2 is the location of the best-to-date trial, N[O, .] is a Gaussian random vector

of mean zero and standard deviation Z-, and dispersion is a search parameter
(constant) set by the analyst, typically to unity. Note the similarity of Eq. B:3 for
GARS to Eq. B:2 used in the GR search. Whereas GR conducts its random
explorations in a region removed from 2, GARS performs its random trials in a
region centered at 2Z.

Whereas GR establishes -an from the standard deviation of the five amoeba

points, GARS determines an from the score of the best-to-date trial. Thus, for GARS

I- = "8o :4

* where:

-n is the standard deviation vector used in computing

go is the initial standard deviation vector

I J* is the best-to-date score as of iteration n

* J8 is the initial best-to-date score.

J8 can be the value determined from an opening GR search. go is usually specified

by the analyst using GARS, but may be determined from an opening search with
GR.

Using Eq. B:4, the standard deviations of the random trial components shrink
to zero as the score J approaches zero (perfection). However, even when the

standard deviations become small, the search can still move quickly to remote

3 B-3

i

regions of the search space, propelled by a deterministic acceleration heuristic that
will now be described.

Once X+l is selected, the new point and the corresponding score are
computed. If a new best score is not found at this new point, another random trial is
selected and another new point is tested. If a new best score is found, the step AX = 1
X1 - 2X is multiplied by two to establish the next trial. As long as consecutive new

best scores are found, AX is repeatedly doubled, causing exponential acceleration of
the search. Once a new best is not found, the search decelerates (it has gone too far)
and tries again. If deceleration fails to improve the score, a final point is attempted
on the opposite side of the best point found so far from the decelerated attempt, and
the search resets, finding a new random AX with acceleration factor of one.

Figure B.2 presents details of the GARS algorithm.

B.3 Combined Guided Random/Guided Accelerated Random Search Search

Care must be taken in initializing GARS. If GARS is initialized with
standard deviations that are too large, the random phase may not readily find a new
best score from which to begin the acceleration process, thus increasing search time. I
However, initial standard deviations that are too small may prolong the search time
by requiring very large accelerations to provide meaningful improvement of the
best score. Therefore, GARS is most effective when preceded by a search algorithm I
such as GR. The flow chart for a combination of GR and GARS (called GRIGARS) is
shown in Fig. B.3. The GR startup finds a good region for GARS and, because GR
sets its own standard deviations based upon the four best scores found and the most I
recent point tested, an estimate of standard deviations is made available for use by
GARS.

I
I
I
I
I
I

B-4n

Begin GARS Search

IIav

Co p t ne , Choose New Point

W * = -ACCA

Divid Acceleration
~~Factor (ACC) by 4 r

(Dclryo Heur T istc

Set Necceleration

Factor (ACC to

Choos New ointChoose New Point

Figuew Best GS Agrih lokDiga

Sav B-5rn

I

egin R Phase: Begin GARS Phase: I

RunTrial R rial

Ce I U**Intalz Choos
Choose B.:Cmi RGARS withc Ne

Shearch (Search

I
I
I

____ I

Poin I

ThecobiEvRaRSnuercateac isouate nFg Fg .
shwsaepesnttiePerfrachoree P(erin)crvfor tisserc.eh
abscissassig of Fi.4 ofticrt) isthAiertiniumer an teordiat isth

reltie enltasined y the ie utltaucin New ethraiacertonf

searh cnvegene sltie durin thessarch

Is th no as n
IT n in he aximm Nmberof teraion
Vgo~ne Ben Reched
Suffiient

I noHas es ys STPBye

1

* 0

Iteration

I Figure B.4: Example Learning Curve for GRIGARS Search

B.4 The Levenberg-Marquardt Search

The Levenberg-Marquardt (LM) search is useful in batch nonlinear regression

to:
(1) Synthesize nonlinear classification neural networks.

(2) Adapt nonlinear estimation neural networks, if a batch algorithm is used
instead of a recursive algorithm to identify system parameters.

Given n nonlinear equations in m variables,

. = f (-) B:5

the goal of the LM search is to minimize the objective function

Jx= II 1- f)II = [Y - fU]T[. _fX)] - [yi - fi()] 2 B:6

I ~i= 1

The gradient and truncated Hessian of the objective function are given, respectively,
by

~B-7

I
I

- (A) ax =) [i -Ii] :

a 2
1 fi() ' (fi) TH(= = 1 2 (, '-)B:8

where, following Gauss, the Hessian terms corresponding to the second derivatives I
of the function, f(.), are ignored. The gradient of the objective function is set to zero
to minimize J(xj. With the gradient and Hessian of J(x), iterative search algorithms
of the form

26 (k+l) = x (k) - a B:9

can be implemented, where a is a parameter that affects the rate of the search and a
is the search direction. The LM algorithm is given by the particular choice

U=(,xa)) + A diagH k))- VJ(x(k)) B:IO

where diag H (x(k)) represents the matrix H (X(k)) with all but the diagonal elements

set to zero and A is a parameter of the search. The parameters found through this
algorithm should be saved and used as a starting point for later iterations. This

algorithm has super-linear to quadratic convergence capabilities; it provides a
solution very rapidly in comparison with alternative search techniques. However,
it is a unimodal search, subject to trapping at local minima. Thus, the GRIGARS
search, which is multimodal, should also be considered.

I
I
I
I
I
I

I
I

APPENDIX C: Prediction of Behavior of a Deterministic
Chaotic Process

C1 Background

I Over the last two decades, there has developed a deepening awareness that
many forms of apparently random behavior are, in fact, manifestations of
deterministic nonlinear dynamical relationships present in the underlying fluid
dynamics, biology, chemistry, economics, etc. of observed processes. Robert May and
others have demonstrated that process governing equations of deceptive simplicity
can be capable of amazingly complex and chaotic behavior. [See Gleik, 1988.] One

I such relationship, known as May's population equation, i.e.

x(k+l) = r x(k) [1 - x(k)] C:1

has been widely studied. In this equation, x(k) denotes the population of a single
species at sample time k, while x(k+l) is the population of this species at the next
succeeding sample. For given x(O), population fluctuations are governed by the
nonlinear parameter r, and the resulting population sequence is simple, complex, or
chaotic depending entirely on the value of r.

Below a certain small value of r, the sequence of population levels decays to
extinction. Above this critical value, but below a second threshold, the population
smoothly approaches a constant steady-state level determined by r, with larger r
producing a larger equilibrium population. Between the second threshold and a
third threshold, the approach to the constant steady-state level exhibits a dampedI oscillation. Between the third and a fourth threshold, the population shows a
steady-state limit-cycle oscillation between two levels, where these levels are
determined by r. Between the fourth and a fifth threshold, the limit-cycle
fluctuations involve four discrete levels. Above this there are thresholds related to
eight, 16, 32, ... levels. Then, at a certain critical value of r, known as the "point of

accumulation" (r - 3.7), the periodic steady-state oscillations break into chaotic
behavior. (Even in the chaotic regime, fascinating subtleties arise as r is increased
further. Detailed discussion of this subject can be found in the literature.)

I Engineering systems can also exhibit complex, even chaotic, forms of
behavior, particularly when "driven hard," i.e., to the limits of their performance
capabilities. For example, the fluctuations of population level characterized by
May's equation bear resemblance to variations of gas flow parameters in a
turbopropulsion system compressor in the presence of rotating stall, during the
advent of compressor surge, and in surge recovery. Studies by other investigators in
the OCNR Active Control Initiative have tended to dispel the notion that the
complexities of compressor behavior are predominantly due to random causes.

C-1

Rather, deterministic models are beginning to offer very promising explanations
and, even, many of the needed predictive capabilities.

Underlying attempts to improve the control of systems that have
fundamentally chaotic, yet deterministic modes of response is the question, "Can we
model chaotic systems from observations of their behavior in well-behaved
regimes, or must we drive them into chaotic behavior (possibly at great cost) to
obtain the needed information for modeling?" In this context, inspection of Eq. C:1
indicates that it should be possible to "learn" May's equation from observational I
data obtained in any mode of population behavior. That is, the structure of Eq. C:1 is
invariant and presumably can be identified, along with a particular value of r, from
observations of the population sequence. If this identification is made, it should
then be possible to change the identified value of r to other values and predict what
will happen in regimes not previously observed.

Notationally, a learned difference equation model for May's equation might
have the form

AA
x(k+l) - f [x(k), x(k-1), ..., x(k-n)] C:2

in which the back-reference factor, n, would be learned along with the form and I
coefficient values within f []. Then, taking

x*(k+l) = G f [C'3

and experimenting with different values of the gain, G, one could readily simulate
the expected system behavior for arbitrarily many cases.

More generally, the learned model structure for an engineering system will
usually involve a set of linear and nonlinear parameters, , not just the single
(nonlinear) parameter, G, appearing in the above example. Artificial neural
network synthesis methods (Sections 1 - 3 of this report) can be used to identify the I
appropriate structure from observational (and, sometimes, simulation) data. This
identification may be made at an arbitrary point in a well-behaved regime, for which
the corresponding parameter vector, i.e., f., is readily found. Then, by exploring

with different i values inserted in the learned model structure, one may perform
gedanken experiments to predict the system behavior in complex and chaotic I
regimes that may not have been directly observed in gathering the database formodeling.

Looking beyond the above conceptualization, consider that, from Eq. C:1

r - (k 1) Ir = x(k) [1 - x(k)]

I
C2-2

so that, if the structure is given, r may be calculated from two or more successive
observations. Extending this idea, one may employ least squares or recursive least
squares to obtain the estimated J from a data sequence, if a model exists (has been
specified or learned) that is linear in the parameter-vector components. One may

also identify A in a model that is nonlinear in its components; this may be
accomplished by a Gauss-Newton form of numerical search (such as an iterative
version of the Levenberg-Marquardt algorithm, Appendix B).

If the process to be controlled has a structure that has been characterized in a
well-behaved regime, but the process is found to be operating in a complex or
chaotic regime, the knowledge needed for recovery of control (i.e., to return the

process to a well-behaved condition) can be acquired by estimating _ in the
complex/chaotic regime. Such estimation would generally be more rapid than
complete re-learning of the process structure and coefficients. For example, if theA

structure of Eq. C:1 has been previously learned, r may be estimated from successive
measurements of x.

Figures C.1 - C.6 illustrate the population sequences resulting from May's
equation using x(0) = 0.4 and the indicated values of r. These figures reveal the
behavior regimes discussed in Section C.1 above.

C.2 Learning the Population Equation from Observations

C.2.1 Static PNNs

Static polynomial neural network nodal elements were trained (fitted) with
data generated by May's population equation using the discrete values of r shown in
Figures C.1 - C.6. (The network synthesis algorithm, ASPN, was never explicitly
"told" what these values were.) The trained elements were then evaluated in the
chaotic regime, and the following median absolute error (MAE) values were
obtained for training on r = 2.5, 2.75, 3.0, 3.25, 3.5, and 3.75, with evaluation in the
chaotic regime at r = 3.75:

1-A. For multilinear triple, three candidate inputs x(k), x(k-1), x(k-2),
and eight candidate terms carved to four terms by ASPN 0.146

1-B. For multilinear double, two candidate inputs x(k), x(k-1), and
four terms (not carved by ASPN) .. 0.134

1-C. For triple with squares and cubes, three candidate inputs x(k),
x(k-1), x(k-2), and 14 terms (not carved by ASPN) 0.009

1-D. For double with squares and cubes, two candidate inputs x(k),
x(k-1), and eight terms (not carved by ASPN) 0.011

C-3

I

1.0 1

0.8- I
o.6-

0.4- -

0.2-

0.0 ..

0 20 40 60 80 100

k

Figure C.1: Population Equation Response for r = 2.5; x[0] = 0.4

I
1.0

I
0.8 I

0.6 I

0.4-I

0.2-

0 .0 ...

0 20 40 60 80 100

kU
Figure C.2: Population Equation Response for r =2.75; x[01 = 0.4

I
c¢-4I

1.0~

0.8-

0.6 I

0.4-1

0.2t

0.0-

0 20 40 60 80 100

k

Figure C.3: Population Equation Response for r = 3.0; x[0I = 0.4

1.0

0.8 -A0@ J@LI"A"M D""0@4122 2 ***@O(1"*@@0

0.6

0.4

0.2-

0.0 -

0 20 40 60 80 100

k

Figure C.4: Population Equation Response for r = 3.25; x(0] = 0.4

c- 5

I

1.0'

0.8 I

0.6- 1)•00P••••44 0• •OO•4 0 I

0.2- -

0.0 1 ...

0 20 40 60 80 100

k

Figure C.5: Population Equation Response for r = 3.5; x[0] = 0.4

0.8 .

0.6' 1' I

0.4'0. ___ 9 4" I

0.0' Jo. 100
0 80

k

Figure C.6: Population Equation Response for r = 3.75; [0I 0.4

C-6

The above work was then repeated with training data omitted for r = 3.5 and
3.75, that is, with data for the four-level limit-cycle and chaotic regimes omitted.
The following MAE values were obtained for training on r = 2.5, 2.75, 3.0, and 3.25,
with evaluation in the chaotic regime at r = 3.75:

2-A. For multilinear triple, three candidate inputs x(k), x(k-1), x(k-2),
and eight candidate terms carved to four terms by ASPN 0.195

2-B. For multilinear double, two candidate inputs x(k), x(k-1), and
four candidate terms carved to three terms by ASPN 0.133

2-C. For triple with squares and cubes, three candidate inputs x(k),
x(k-1), x(k-2), and 14 candidate terms carved to four terms by
A SPN) .. 0.195

2-D. For double with squares and cubes, two candidate inputs x(k),
x(k-1), and eight terms (not carved by ASPN) 0.016

Cases 1-D and 2-D are graphed in Figures C.7 and C.8, respectively, where the
solid squares represent evaluations at the training-data values of r, while the open
squares represent evaluations at r values not used for training.

C.2.2 Dynamic PNN Elements

The work with dynamic PNN nodal elements in this application was very
preliminary as it pre-dated creation of the Dyn3 and DynNet algorithms described in
this report. Four dynamic nodal elements were synthesized. Using training data for
r = 2.5, 2.75, 2.0, 3.25, 3.5, and 3.75, evaluating in the chaotic regime for r = 3.75, the
MAE value was:

3. Modified multilinear double with one self-feedback of W(k), a
unit delay in the feedback, one input x(k), and six terms in the
core transform ation .. 0.103

Omitting r = 3.5 and 3.75 data during training, but evaluating at r = 3.75:

4. (Sam e as 3.) ... 0.162

C-7

0.18

0.161 _ _ _ _ _ __ _

C. 12

0.10-

0.08__ _

0.04-

0.02-

0.00* ~I
1.5 2.0 2.5 3.0 3.5 4.0

Population Growth Constant, rI

Figure C7(a): Population Growth Model Results: Median AbsoluteI
Error (model synthesized from observations for r = 2.5,
2.75, 3.0, 3.25, 3.5, and 3.75 using a "Double" with squares

0.8- and cubes-S8 coefficients)

0.7-__ I__ _ _

0. __ __I__ __ _

0.3-

1.5 2.0 2.5 3'0 3.5 4.01

Population Growthi Constant, r

Figure C.7(b): Population Growth Model Results: Error Standard
Deviation- (model synthesized from observations for r=

2.5, 2.75, 3.0, 3.25, 3.5, and 3.75 using a "Double" with
squares and cubes - 8 coefficients)

C- 8

0.18-

I ~ ~~~ ~~0.16-j____ ________

0.14-.

1 1 ~ ~~~~0.12 _________ 1_________

0.08

I ~~0.06'-____

I ~~0.04-___I__

0.02-

I 0.00*1
1.5 2.0 2.5 3.0 3.5 4.0

I Population Growvth Constant, r

Figure C8(a): Population Growth Model Results: Median Absolute
Error (model synthesized from observations for r = 2.5,
2.75, 3.0, and 3.25 using a "Multilinear Double" - 4
coefficients)

1 ~ ~~~~0.6-_________

I 0.7-

0.6-

003

I 0.42

I Population Growthi Constant, r

Figure 08(b): Population Growth Model Results: Error Standard
Deviation (model synthesized from observations for rI 2.5, 2.75, 3.0, and 3.25 using a "Multilinear Double" - 4
coefficients)

I 0-9

I
I

Next, training on r = 2.5, 2.75, 3.0, 3.25, 3.5, and 3.75, evaluating for r = 3.75:

5. Modified multilinear triple with two self-feedbacks 0f (k), one
with a unit delay and one with a two-unit delay, one input x(k),
and eight terms in the core transformation. 0.167

Omitting r = 3.5 and 3.75 data during training, but evaluating at r = 3.75:

6. (Sam e as 5.) ... 0.145

Note that this last case actually showed improvement when training in the chaotic
regime was withheld.

It would be desirable to re-visit the dynamic nodal element experiments
using Dyn3 and DynNet, so as to obtain a more meaningful comparison between

static and dynamic nodal elements used to model the behavior of May's equation.

I
I
I
I
I
I
I
I
I
I
I

C-10 I

APPENDIX D

Contract N00014-89-C-0137
Technical Progress Report 2

COMPARATIVE STUDY: STATIC AND DYNAMIC POLYNOMIAL
NEURAL NETWORKS FOR REAL-TIME OPTIMUM TPBV
GUIDANCE OF A TACTICAL AIR-INTERCEPT MISSILE

Todd M. Nigro
Dean W. Abbott
Roger L. Barron

April 20, 1990

Prepared for.

DEPARTMENT OF THE NAVY
Office of the Chief of Naval Research

Applied Research and Technology Directorate
800 North Quincy Street

Arlington, Virginia 22217-5000

Attention: Dr. Robert J. Hansen, Director

Prepared by-

BARRON ASSOCIATES, INC.
Route 1, Box 159

Stanardsville, Virginia 22973-9511
(804) 985-4400

D-1

I

FOREWORD H
This technical progress report has been prepared by Barron Associates, Inc., I

Stanardsville, Virginia, to document part of the work performed from August 15,
1989, to March 31, 1990, under Contract N00014-89-C-0137 with the Office of the Chief
of Naval Research, Applied Research and Technology Directorate, under Dr. Robert
J. Hansen, Director. The research is part of the ONR initiative in active control of
complex systems.

The authors express their gratitude to Dr. Hansen, ONR Scientific Officer for
this project, and to Mr. James G. Smith of ONR for their strong encouragement and
support.

Opinions expressed in this report are those of the authors and Barron
Associates, Inc., who are solely responsible for its content.

II
I
I
I
I
I
I

I
I

D-2

(i)

TABLE OF CONTENTS

Page

FOREWORD .. i

TABLE OF CONTENTS .. ii

LIST OF FIGURES ... iii

LIST OF TABLES .. iii

1. INTRODUCTION ... 1

2. MISSION PROFILE, ASSUMED MISSILE DYNAMICS,
AND THE VARIATIONAL OPTIMUM SOLUTION 3

2.1 Mission Profile ... 3

2.2 Assumed Missile Dynamics .. 3

2.3 Point of Intercept Calculation .. 6

2.4 Variational Optimum Solution ... 8

3. DATA BASE GENERATION .. 12

4. OVERVIEW OF DYNAMIC NETWORKS ... 14

4.1 Initialization .. 14

4.2 Synthesis of Dynamic Networks ... 15

5. STATIC AND DYNAMIC NETWORK SYSTEM
SYNTHESIS PROCEDURES ... 18

5.1 Static Network Synthesis ... 18

5.2 Dynamic Network Synthesis .. 20

6. STATIC AND DYNAMIC NETWORK PERFORMANCE 22

6.1 Accuracies within the Design Region

without Measurement Uncertainties ... 22

6.2 Robustness: Accuracies on Boundaries of the Design Region
without Measurement Uncertainties .. 23

6.3 Robustness: Accuracies when Extrapolating in Time
without Measurement Uncertainties .. 24

6.4 Robustness: Accuracies within the Design Region
with Measurement Uncertainties ... 25

6.5 Robustness: Simplicity of Designs .. 26

6.6 Maxdmization of Missile Terminal Speed ... 26

6.7 Summary of Performance Results .. 26

7. CONCLUSIONS .. 28

R EFER EN C ES .. 29

D-3
(ii)

m
I

FIGURES I
1: M ission Profile .. 3

2: Example PIP Calculation ... 7

3: Equation-Error Method for Synthesizing Dynamic Nodes 15

4: Output-Error Method for Synthesizing Dynamic Nodes 16

5: MFB Network Synthesized as a Predictor .. 17

6: MFB Network Synthesized as a Controller ... 17

7: Angle of Attack, a, vs. Time for Various Trajectories 19

8: Startup Static N etwork .. 19

9: Prim ary Static Network .. 20

10 Score vs. Degrees of Freedom for Different Structures 20

11: Primary Dynamic Network, Microscopic View ... 21

12: Steering Function and Trajectory Accuracies:
Operating in Design Region, without Measurement Uncertainties 23

13: Steering Function and Trajectory Accuracies:

Extrapolation in Time, without Measurement Uncertainties 25

14: Steering Function and Trajectory Accuracies: 3
Operating in Design Region, with Measurement Uncertainties 26 I

TABLES m

1: Example PIP Calculations, Assuming Constant Target Velocity 8

2: Off-Line Synthesis Methods for Prediction and Control 17

3: Steering Function and Trajectory Accuracies:
Operating in Design Region, without Measurement Uncertainties 22

4: Steering Function and Trajectory Accuracies:
Operating on Upper Boundary, without Measurement Uncertainties 23

5: Steering Function and Trajectory Accuracies:
Operating on Lower Boundary, without Measurement Uncertainties 24

6: Steering Function and Trajectory Accuracies:
Extrapolation in Time, without Measurement Uncertainties 24

7: Steering Function and Trajectory Accuracies:
Operating in Design Region, with Measurement Uncertainties 25

8: Sum m ary of Results .. 27

D-4

(iii) I

1. INTRODUCTION

Under the subject contract, Barron Associates, Inc. is developing an algorithm
for synthesis of dynamic (i.e., reverberant or recurrent) neural networks, i.e.,
networks having internal feedback paths and time delays, and applying these
networks in two principal areas: (a) active control of propulsion systems that are to
be operated close to optimum combustion conditions and (b) detection and
discrimination of sonar acoustic waveforms. Additionally, to facilitate algorithm
development, other applications have been studied from time to time. Thus, Ref. 1
describes an investigation made by Barron Associates into modeling the behavior of
the population growth equation, which can exhibit forms of deterministic disorder
that include chaotic behavior. It was shown that polynomial neural networks can
model the behavior of the population growth equation using data from a regime of
simple behavior, then accurately predict population changes in the extinction and
chaos regimes.

The present report describes a comparative study of static and dynamic
polynomial neural networks; the application chosen for this study is control of a
tactical air-intercept missile to achieve real-time, optimum, two-point boundary-
value (TPBV) guidance within a vertical plane of motion. It is demonstrated that
both static and dynamic networks are feasible for this application and that dynamic
networks have performance and robustness superior to that of static networks.

The TPBV missile guidance problem is a good proving ground for
comparative analyses of neural networks for active control. Solution of the TBPV
problem requires real-time generation of a time-varying steering function for the
missile such that:

(1) the desired control path is followed closely,

(2) boundary conditions on the trajectory are accurately fulfilled,

(3) the guidance system accommodates large variations in intercept
conditions,

(4) induced drag and kinetic energy losses due to maneuvering of the
missile are minimized, and

(5) the system is robust in the presence of uncertainties in measurements
of the missile states.

D-5
(1)

i
I

This report outlines a nonlinear two-degree-of-freedom guidance problem,
lists the derived governing equations for optimality using the calculus of variations,
describes the procedure for establishing a representative data base (field) of optimum
trajectories, summarizes the steering-function models of these trajectories created as
static and dynamic neural networks, and assesses and compares the performance
and robustness of both types of networks.

I
I
I
I
I
I
I
i
I
I
I
g
i

D-6
(2)

2. MISSION PROFILE, ASSUMED MISSILE DYNAMICS, AND THE
VARIATIONAL OPTIMUM SOLUTION

2.1 Mission Profile

Consider an air-intercept missile that is guided in a vertical plane to a
predicted intercept point (PIP) for a moving target. The PIP comprises predicted
intercept time, predicted intercept downrange position, and predicted intercept
height. Let the initial conditions be identical for all trajectories of the missile and
assume a constant speed for the target. Also, assume a horizontal movement of the
target at an altitude of 80,000 ft., as shown in Figure 1, below-

Initial
Predicted Target
Intercept Position at

80,000 ft.
Position Target Path Altitude

Fixed Initial 20,000 ft.
Conditions
at 60,000 ft.Altitude1

Figure 1: Mission Profile

2.2 Assumed Missile Dynamics

Let the missile and PIP positions be defined in terms of a horizontal axis,

(i.e., North), and an orthogonal vertical axis, 11. These axes are assumed to be fixed
in inertial space, i.e., for present purposes it is assumed that the Earth is flat and
non-rotating. Geometric altitude, H, is measured upward from mean sea level

along t. Assume that the missile is unthrusted, has constant mass, and that the
time constant of the missile rotational responses to pitch-attitude commands is
negligibly small. Assume that, over the altitude band of the guided flight of the
missile, the atmosphere density decreases exponentially with altitude and the
acceleration of gravity decreases gradually with geopotential height. Assume,
moreover, that the aerodynamic characteristics of the missile are independent of
Mach number.

D-7
(3)

I
I

Pursuant to these simplifying assumptions, the dynamic and kinematic
equations of motion of the missile become:

f =- mV + mgsiny +qSCD = 0 21

f2 0 2.2

f3 - mV, + mgcosy- qSCL =0 2:3

f4 0 2:4 I

f5 a N - Vcosy = 0 2:5

f6 a if - Vsiny = 0 2:6

where:

m = missile mass

g = acceleration of gravity = go Re/ (Re + H)

go = acceleration of gravity at mean sea level

Re = Earth radius at reference latitude I
V = missile speed = (N2 + I:I2)1/2

N = missile downrange (North) position

H = missile altitude (Height)

y = missile flight path angle = arctan (l/) I
q = missile dynamic pressure = p V2

p = atmosphere density = Pb ex (Hb HDJ.

Pb = atmosphere density at base altitude I
Hb = base altitude

D-8
(4)

= geopotential height = (Re H H

Hs = atmosphere scale height

S = missile reference area

and, for a small aerodynamic angle of attack, a, which is defined as the missile pitch
attitude minus the missile flight path angle:

CD = missile drag coefficient = CDO + K CL2 = CA + CNaz" a 2

CD0 = coefficient of missile drag at zero lift

K = coefficient of missile drag induced by lift = CNa/(CNa - CA)2

CL = missile lift coefficient = (- CA + CNa) (X

CA = missile axial force coefficient (= CD0 for small a)

CNa = partial derivative of missile normal force coefficient (CN) with

respect to a = K CLa 2

It may be readily shown (Ref. 2) that the maximum lift-to-drag ratio of the
missile is

(L/D).=(~

and that:

CL(L/D)n. = a(L/D)max (CNa - CA)

Assuming:

CA = 0.4

CNa = 7.2/rad.

D-9
(5)

1
I

it follows that (L/D)max = 2.0, K = 0.1557, a(L/D)max = 13.5 deg., and C14L/D)max = 1.603.

The following hypothetical properties of the missile are also assumed:

Weight = 1,000 lb., whence m = 31.08 slugs (453.6 kg.)

S = 1.0 ft.2 (0.0929 m.2)

The release (initial) conditions for all flights of the missile are assumed to be:

N(to) = No = 0

H (to) = H0 = 60,000 ft. (18,288 m.) I
V (to) = V0 = 2,239 ft./s. (682.4 m./s.) I
y(t0) = M = 30.0deg.

The geophysical parameter values assumed are: 1

go = 32.199 ft./s.2 (9"814 m./s'2)

Re = 20,844,531.5 ft. (6,356,785.2 m.)

Pb = 0.002,376,92 slug/ft.3 (1.225 kg./m. 3)

b =1

Hs = 32,111 ft. (7,044 m.)

I
2.3 Point of Intercept Calculation

Computation of the PIP is external to the guidance system. However, the PIP I
is a function of the expected time of flight of the missile, and therefore the PIP is
designated for a specific final (intercept) time tf. At intercept, N(tf) = NT(tf) and
H(tf) = HT(tf), where the subscript "r" denotes the target. For simplicity, it is
assumed that the target moves with a constant negative &T at a constant altitude of
80,000 ft., whence

NT (tf) = NT (o) + (tf - to) &TI

D-10
(6)

I
I
I and

HT (tf) = HT (to) = 80,000 ft. (24,384 m.)
An example PIP calculation is shown below:

Intercept Initial
Position Target

t = 46.4 s. Target Path DistanceI Misse t=O
Path-

I 20,000 ft

I

0153,100 ft.

Figure 2: Example PIP Calculation

The above assumptions regarding target motion are not limiting, because, in

principle, the target path to the PIP may be any trajectory for which a valid
prediction of the intercept point can be made. In general, the intercept prediction
involves iteration, although it should be possible to employ a neural network to
compute the PIP (or a reasonable first iterate) from knowledge of target and missile
states at to. A few examples of PIP and time of flight calculations are presented in
Table 1, below:I

I

D-11
(7)

I
I

Table 1: Example PIP Calculations, Assuming Constant Target Velocity

Initial Target Target Intercept Time of
Position, ft. Velocity, ft./s. Position, ft Flight, s.

r (to) VT NT (tf) tf

134,300 1,467 75,000 40.4

143,600 1,467 80,000 43.4 I
153,100 1,467 85,000 46.4

162,800 1,467 90,000 49.6

173,000 1,467 95,000 53.1

I
2.4 Variational Optimum Solution

Let us take as the criterion of guidance system performance the following
functional that is to be minimized 3

tf

I -CO mV2 (tf)/ 2 + f (Cia 2 + 2:TDdt 2:7 I
to

in which CO and Ci are constants (Lagrange multipliers), 2T - [Xi, ... , X6], and f has
the components fl, ..., f6 from Eqs. 2:1 - 2:6. The CO term (outside the integrand)
introduces the final kinetic energy of the missile, which is to be maximized by
minimizing its negative. The Ci term (within the integrand) provides a constraint

on "control effort", defined as the time integral of a2 . (At a constant speed and
altitude, control effort would be proportional to induced drag impulse.)

It is convenient to transform Eq. 2:7 into its equivalent Lagrange
representation

tf3

I=- COmV2 (to)/2 + f Fdt

toI

where F is the augmented integrand (Hamiltonian)

D-12
(8)

F -=-COmVV + Cja 2 + 2, 2.8

Because V(t0) is prescribed at the initial boundary, it is ignored in the optimization,
and we seek minimization of the functional

tf

I, = I + COmV2 (to)/2 = f Fdt 2:9

to

between the fixed limits (prescribed end times) to and tf.

The variational freedoms for this optimization are:

a(t), i.e., the steering function

V(t), 7(t), N(t), H(t), i.e., the missile states

The boundary conditions are:

prescribed boundary values

to, No, H0, V0, TO (whence 8t0 = 8N 0 = 8HO = 8VO = &yo = 0)

tf, Nf, Hf (whence 8tf = SNf = Hf 0)

free boundary values

a0 (whence Bao is variable)

(xf, Vf, af, yf (whence 8af, 8Vf, &f are variable)

From the theory of the calculus of variations (Ref. 2), the following
conditions apply:

first-variation conditions

Fc = 0 (since Fa=0) (Euler-Lagrange)

Fv = FV, Fy = Fy, FN = FN, FH = FH (Euler-Lagrange)

D- 13
(9)

I

(F,)f 8Vf + (Fy)f &yf + (FN)f 8Nf + (FH)f 8Hf I
+ [F - (F)V - (Fy) t - (Fr1)N - (FH4)1 If 8tf = 0 (transversality)

i.e., (Fv)f = 0; (Fy)f = 0

second-variation condition

Fca > 0 (Legendre) I
From Eq. 2:8 (the Hamiltonian) and the above conditions, one obtains the

optimum steering function (command equation)

X3 qS (CNax - CA) I
(X= 2 (C + %1 qS CNa) 2:10

in which (Legendre condition) it is required that I
C1 + X1qSCNa > 0 2:11

and the co-state differential equations: I

lm = qv S (X1 CD - X3 CL) + X3 m7 - X5 cos y - X6 sin y 2:12

.3 mV = - 3m (g siny + Vi) + X1 mg cos y + X5 V sin y - X6 V cos y 2:13

15 = 0 2:14 I

= qH S (X1 CD - X3 CL) 2:15

In Eq. 2:12

qV = pV 2:16

and in Eq. 2:15

q (Hp)H H (H 2:17qH=-Hs Hs F

I~!2)2

D-14
(10)

The necessary final values (from the transversality conditions) are:

11 (tf) = CO Vf 2.18

X3(Of) = 0 2A19

There are no transversality conditions to be satisfied at to.

D- 15
(11)

I

3. DATA BASE GENERATION i

To generate an optimum trajectory for the polynomial neural network
synthesis data base, the missile equations of motion (2:1 - 2:6) and the co-state
differential equations (2:12 - 2:15) are integrated backward in time under control of

the steering function (Eq. 2:10) from the PEP using .l(tf) and X3(tf) from Eqs. 2:18 and i
2:19, the prescribed values of Nf, Hf, and the desired values of Vf, yf. A numerical

search (called the first-stage search) is employed, adjusting X5(tf) and X6(tf), to obtain

the requisite H0 and yo. Any trajectory for which I a I and/or IyI exceed maximum
values should be eliminated from the data base, as should any trajectory that

violates the Legendre test, 2:11. When this first-stage search has converged, .5(tf) i
and X6(tf) are adjusted until a maximum value of Vo is obtained while satisfying the

prescribed values of Ho and yo. This is tantamount to minimizing terminal kinetic
energy once Vo is fixed. Once V0 has been maximized, the time of flight, the end
states, and the parameters of the extremal arc are recorded:

(tf - to), No, Ho, Vo, yo, Nf, Hf, Vf, 7f; Co, C1, X1 (to), X3 (to), X5 (to), X6 (to).

Note that one may keep Co fixed at unity without loss of generality. One may i
choose instead to keep X5(tf) or X6 (tf) fixed, and vary all other Lagrange multipliers
with respect to the one fixed multiplier. Note also that downrange distance is not
directly constrained, but can only achieve values that are consistent with
extremization of the performance criterion.

A somewhat simpler search is obtained by freezing f at a prescribed value. In

this case %3(tf) is not constrained to be zero by the transversality conditions (Eq. 2:19),

but rather participates in the first-stage search along with X5(tf) and .6(tf), and I
convergence to No, Ho, yo can be obtained in the first stage. It is then easier to adjust

X3(tf), X5(tf), and .6(tf) while seeking a maximum V0 . Prescribed Tf values arise
operationally because of anti-jam or weapons-effects considerations.

A data base is created for given initial states by extending the solution space to
a field of PIP conditions, either by following the same procedure as for the first entry,

or by changing the (to) component values. In the present work, X5 (to) was
systematically changed to produce a family of intercept points, i.e., NT(tf) values, at
80,000 ft. altitude. A data base of 388 optimum trajectories was generated, each
trajectory corresponding to a different NT(tf) within a large intercept window at
HT(tf) = 80,000 ft. The smallest NT(tf) value was 72,062 ft. (21,964 m.), for which tf
was 38.8 s. The largest NT(tf) value was 97,518 ft. (29,723 m.), for which tf was 55.1 s.
Note that these trajectories are extremals in that they satisfy the Euler-Lagrange
necessary conditions, but do not necessarily satisfy the transversality conditions at tf.
In general, the transversality conditions are weaker than the Euler-Lagrange
conditions, and thus trajectory optimization was not substantially degraded. The 3

D- 16
(12)

I
I

benefit is that data base generation is considerably simplified when the
transversality conditions are not stringently applied.

The data base entries can contain information for each trajectory about its
initial co-state values, kl(t0), .3(t0), X5(t0), 6(to), and equivalent information about
its steering function history, a(to), c(tl), ..., a(tf). These equivalent steering function
histories are used for syntheses of both static and dynamic networks. The two
synthesis procedures are discussed in Section 5.

ws In summary, the method used to generate a data base in the present example

was:

1. Set desired Hf = 80,000 ft., Vf = 1,800 ft./sec., and yf = -10 deg.

2. Select Co = 1, C1 = 1 (thus C1 did not contribute significantly to the cost
i functional).

3. Compute Xl(tf) based on Vf from the transversality condition.

4. Select arbitrary X3(tf), X5(tf), and X6(tf).

5. Integrate differential equations backward until H 60,000 ft., denoting
the time at this altitude as to.

6a. Note yo. If yo is within specified tolerance (30 deg., ± 3 deg.), note Vo, and
search on X3(tf), X5(tf), and X6(tf) for maximum VO. Then go to Step 7.

I 6b. If yo is not within specified tolerance, go to Step 4 and repeat until the
requirement on yo is satisfied.

- 7. Create a family of reverse-integration trajectories, each for the same
initial states but a different Nf. (Each individual trajectory is obtained by
following steps 1 - 6.)

or

Create a family of extremal trajectories by varying one or more of the
initializing Lagrange multipliers and noting the intercept position.

This method may be extended to the generation of a field of optimal
trajectories for a variety of initial states and a variety of final states.

D-17
(13)

I
I

4. OVERVIEW OF DYNAMIC NETWORKS

Dynamic polynomial neural networks (PNNs) can compute a time-varying
prediction or control signal given a static input and provide a phase-shift operator
between time-varying inputs and time-varying prediction or control signals. In I
addition, they can employ all of the available training data, so there is no need to
interpolate between discrete-time outputs. Thus, smoother on-line operation
results with dynamic neural networks. As we will show, for a given application,
dynamic PNNs are simpler, resulting in less probability of overfit and an increase in
accuracy and robustness. However, there is a price to pay: (1) there is an
initialization requirement and (2) the synthesis of dynamic networks requires 8
iteration. Moreover, there is presently no synthesis algorithm that efficiently learns
the structure of dynamic networks.

The following definitions are used:

Static Node: a node with no internal self-feedbacks or time delays.I

Dynamic Node: a node with self-feedbacks and/or input time delays
internal to the node. Note that self-feedback connections are

implemented with time delays in the self-feedback paths. Otherwise,
the node is tantamount to a node that uses division, i.e., a rational
function.

Non-Memory Feedforward (NMFF) Node: a static node.

Memory Feedforward (MFF) Node: a dynamic node with internal time
delays of the inputs, but no self-feedback connections.

Memory Feedback (MFB) Node: a dynamic node with internal self-
feedback connections, but not necessarily with internal time delays of I
the inputs.

Shift Register: a device in the dynamic node that stores previous input
or output estimates.

4.1 Initialization

Prior to the time a dynamic network is first interrogated, time tl,. I
initialization with previous values of inputs and/or the output to estimate the
output value is required. This does not pose a problem if no estimate of the output
is needed prior to time t1, i.e., before the shift registers of the dynamic node are

filled. For example, in signal processing applications, it may be sufficient that the
first output estimate be available only after enough of the signal has been seen (i.e.,

D-18
(14)

I/

after the dynamic network shift registers have been filled), and therefore, prior to
time tj, no output estimates are needed. In other applications, however, such as
control problems, output estimates must be generated beginning at time to, and
therefore an additional step must be taken to produce output estimates prior to time
tl-

When output estimates are required before time tj, at least one additional

static or dynamic startup (initialization) node must be synthesized to provide the
needed output estimates. These startup nodes use short-term memory, i.e., they
contain only one or two self-feedback paths. With this short-term memory dynamic
node, the network contains at least three nodes: a static node to initialize the system
at to, a startup dynamic node with one self-feedback path to provide output
estimates from time to to tj, and a primary dynamic node to operate from time tj to
the end of the control interval.

4.2 Synthesis Methods for Dynamic Networks

There are two types of algorithms with which to train dynamic PNNs:
equation-error methods and output-error methods.

Equation-Error Methods: the output estimate is found as shown in Figure 3, using
previous output values obtained from the data base, not from previous output
estimates.

----------------- -- ------------------------ 1

MFB Dnmic Node

x Wt

from I (t)
data base Analytic Function _ _t

y (t) At *V (t_ AtO

y - n
ItI
L---I

shift register

Figure 3: Equation-Error Method for Synthesizing Dynamic Nodes

D-19

(15)

m
I

The equation-error method does not require iteration for synthesis, thus, in general,
it is computationally simpler than output-error methods. A fully-developed
algorithm, ASPN-II (Algorithm for Synthesis of Polynomial Networks, see
Appendix), implements the equation-error method using a general linear least-
squares fitting algorithm, i.e., the model equation is linear with respect to the model
coefficients. However, a large amount of pre-processing may be required to
manipulate the data base into a usable form and equation-error training is only
appropriate for certain kinds of problems. Equation-error training is analogous to a
finite impulse response (FIR) technique.

Output-Error Method: the output estimate is found as shown in Figure 4, using
previous output estimates obtained by implementing the MFB node.

MFB Dyamic Noe

X W
*
I x (t)I'I

from Xt W x(t-&)

data base - At Analytic Function
• A

x (t- nAt)

* AtAt

- I

°shift register

Fiur 4:Otu-ro ehdfrSnhsznNyai oe

To find the model coefficients, a general nonlinear least squares fitting algorithm ism
used, i.e., the model equation is nonlinear with respect to the model coefficients.
The algorithm conducts an iterative search, and therefore requires longer for a
solution to be obtained than equation-error methods. Output-error training is
analogous to an infinite impulse response MR) approach,.m

The preferred method of training depends on the application in which them
network is to be used. Equation-error syntheses are best suited for MFB predictorsm
(Figure 5) because output estimates do not directly influence future network inputs
and outputs. Thus, output estimates should not affect future output estimates in
synthesis.

D-20(16)m

IA
I

-- Plant 21 Wt , MFB Predictor _ (t + at) Ni

Figure 5: MFB Network Synthesized as a Predictor

I On the other hand, when a controller is desired (Figure 6), output estimates directly
influence future MFB network inputs and outputs; therefore, in synthesis, current
output estimates should be reflected in future output estimates.

2 (to)
,

I __W (t 4 FB Controller acnvmad 1 Plant A Wt

I

Figure 6: MFB Network Synthesized as a Controller

Table 2 summarizes the off-line synthesis methods and their corresponding
synthesis algorithms and applications. The algorithms used for equation-error and
output-error syntheses are, respectively, generalized linear least-squares (Ref. 3) and
a modified Levenberg-Marquardt (Ref. 4) search.

Table 2: Off-Line Synthesis Methods for Prediction and Control

Node Type Error Type Iteration Preferred Synthesis Application for Which
Algorithm Best Suited

NMFF Equation Error No Least Squares Prediction/Control

MIFF Equation Error No Least Squares Prediction/Control

MFF Equation Error No Least Squares Prediction

Output Error Yes Levenberg-Marquardt Control

D-21I (17)

I
I

5. STATIC AND DYNAMIC NETWORK SYSTEM SYNTHESIS PROCEDURES
FOR THE TPBV GUIDANCE SOLUTION I
As discussed earlier, a data base of 388 optimum trajectories was generated,

each corresponding to a different intercept point. The data for each trajectory
included the intercept position and time-histories of the missile steering function,

a, position, speed, and flight path angle. The time of flight (tf) was different for each
trajectory, 38.8 s. < tf < 55.1 s. To provide a simplification and allow a region in
which to test time extrapolation capabilities of the network designs, each trajectory
in the data base was truncated at 38.5 s.

The initial conditions were identical for all trajectories created; therefore, an
initialization node at to was not required. Since the dynamic network required a
startup node, an appropriate data base was needed over the startup interval. Thus,
the original data base was divided into two parts with different sampling rates
covering different portions of the trajectories. The startup data base contained the
first 10 s. with a sampling rate of 0.01 s. With a sampling rate of 0.5 s., the primary
data base consisted of the entire trajectory up to 38.5 s. Due to the comparative
nature of this investigation, the static and dynamic network designs each used both I
the startup and primary data bases in training. These data bases included a set of
candidate inputs for the synthesis process. Although a static startup node is not, in
general, a requirement for static designs, performance was improved with its U
inclusion.

The output of each of the models was a(t), the aerodynamic angle of attack !

(also called the "steering function"). Figure 7 below, shows (x(t) for three optimum
trajectories. It should be remembered that only the first 38.5 of each trajectory was
used in the training of the primary network.

5.1 Static Network Synthesis Procedures

Using ASPN-Il (the Algorithm for Synthesis of Polynomial Networks),
startup and primary networks were synthesized. ASPN-H is based on an
information theoretic criterion called predicted squared error (PSE). The model
fitting score is penalized using a complexity penalty to avoid overfitting the data.
PSE, in its simplest form, is written (Ref. 5)

PSE = FSE + 2 K (2 I
N

where FSE is the fitting squared error, K is the number of coefficients in the model,

N is the number of data vectors used for the model, and ap 2 is an a priori estimate of
the error variance of the model, independent of the model structure being
considered. The second term in the above equation is commonly called the

D-22

(18) 1

I

10I
_.

-a- Shortest Trajectory

-4- Longest Trajectory

0
S -- a- Nominal Trajectory

-20.
0 10 20 30 40 50 60

Time, sec.

Figure 7: Angle of Attack, a, vs. Time for Three Optimum Trajectories

complexity penalty. The PSE criterion governs selection of nodes in the model, the
carving of unproductive terms in the model, and the cessation of network growth at
an optimum level of complexity.

The static networks used only "time-now" values of the observables: missile
speed, missile downrange distance travelled, predicted intercept downrange
distance, and the cosine of flight path angle. Training data for the static startup node
consisted of 25 trajectories with downrange intercept position distributed uniformly.
The startup network, shown in Figure 8 below, consisted of two layers, with a total
of 17 terms, and was used as the controller for the first 8 s. of flight, after which the
primary network was implemented.

NT)1 Triple a (t)
Cos I (t) Double

N(t)] Single

Figure 8: Startup Static Network

D-23
(19)

I
I

The primary network was trained from 35 exemplars with downrange intercept
position distributed uniformly. The two-layer network contained 26 terms as
shown in Figure 9 below.

I
NT Triple cc(t)

N() Double _ __I

NT j Single _

Figure 9: Primary Static Network

5.2 Dynamic Network Synthesis

An algorithm has not yet been developed that is capable of finding the best
structure for dynamic controller networks. The network structure has several
characteristics that must be determined: the number of internal self-feedback paths,
the maximum delay in time, and the relevant inputs. Additionally, a trade-off
between network complexity, fitting accuracy, and robustness must be considered. 3

Figure 10, below, shows the improvement of the score (fitting squared error)
as the number of terms in the model is increased for a representative network
synthesis run.

10. 4
I

0 - -

-___I
S0 4

10-7 _ _ I

10-i I

0 10 20 30 40 50

Terms I
Figure 10: Score vs. Degrees of Freedom for Different Structures I

D-24
(20)

The search for the structure that yielded the best trade-off between accuracy of fit and
complexity was aided by ASPN-Il. An equation-error network was synthesized
using ASPN-II, with the resulting inputs and time delays noted. Using the same
inputs and variations on them, the dynamic node was synthesized using dyn2., an
algorithm that synthesizes nodes using output-error. The equation-error solution
by ASPN-f was found to be an efficient initial starting point for the Levenberg-
Marquardt search employed in dyn2.

The resulting startup network consisted of ten terms, with missile downrange
distance, altitude, speed, and the intercept downrange distance as inputs. There was
only one self-feedback path associated with this network, thus, the maximum delay
was 0.01 s. The primary network consisted of 14 terms, with inputs of missile speed,
downrange distance, height, and the intercept point. Four feedback paths were used:
one, four, 12, and 16 time-steps back. The maximum delay, therefore, was 8 s. The
figure below shows the inner structure of the primary dynamic network.

NT -

Figure 11: Primary Dynamic Network, Microscopic View

D-25
(21)

I
I

6. STATIC AND DYNAMIC NETWORK PERFORMANCE IN THE TPBV
GUIDANCE SOLUTION

In this section, selected performance and robustness tests are described and
results compared for the static and dynamic designs. It should be noted that all of
these tests were done open-loop, i.e., after initialization, so there was no
information available for use in the guidance law reflecting its performance (such as
predicted miss). The statistics presented compare optimum trajectories stored in the
training data bases with results from implementation of the guidance law. With the
exception of the "extrapolation-in-time" test, all results were calculated for the first
38.5 s. of flight. The design region for all tests is defined to be that for which the
intercept position is between 75,000 and 95,000 ft. downrange.

All results presented are based on evaluation data (target positions not
included in the training data base). For each test, more than 100 trajectories were
flown.

6.1 Accuracies within the Design Region without Measurement Uncertainties I
The median alpha RMS error in degrees was 0.054 and 0.014 for the static and

dynamic neural network designs, respectively: an improvement ratio of

approximately four to one (dynamic vs. static), as shown in Table 3 and Figure 12.
Also, the median terminal position error (miss distance) was 5.9 and 3.8 ft. for the
static and dynamic networks, respectively.

Table 3: Steering Function and Trajectory Accuracies: Operating in Design
Region, without Measurement Uncertainties

Alpha RMS Error, deg. * Miss Distance, ft. I
Static Dynamic S/D Ratio Static Dynamic S/D Ratio

Mean 0.060 0.015 4.0 Mean 5.9 4.0 1.5

Std. Dev. 0.053 0.011 4.8 Std. Dev. 4.1 2.5 1.6

Max 0.105 0.026 4.0 Max 1328 9.9 1.4

Median 0.054 0.014 3.9 Median 5.9 3.8 1.55

Salpha w aerodynanic angle of attack (steering function) I
I
I
I

D-26
(22)

U

0.20 2D
StaticSai

U Dynamic Dynamic
0.15 Is-- I4J

I 0.10

I .0.05 5

0.00 0

I Mean Max Median Mean Max Median

Figure 12: Steering Function and Trajectory Accuracies: Operating in Design
Region, without Measurement Uncertainties

6.2 Robustness: Accuracies on Boundaries of the Design Region
without Measurement Uncertainties

Robustness is of great importance when considering neural network
solutions. These networks generally perform better on the interior regions of the
design data base because the boundaries of the performance envelope are not
usually represented as fully as the interior points during training. Trajectories that
operate near the upper boundary have to generate as much lift as possible to reach
the far intercept point, thus causing a to come close to the maximum allowed (I a I <
25 deg.). Both network designs handle the upper boundary accurately, with median
alpha RMS errors of 0.140 and 0.034 deg., respectively, for static and dynamic
networks, again an improvement ratio of approximately four to one (dynamic vs.
static), as shown in Table 4. On the lower boundary, although errors in RMS
steering function error are less for the dynamic network, miss distance results are
more comparable, as shown in Table 5. This is because the miss distance is not
completely a function of the steering function errors, but miss distance is affected
also by when the errors occur.

Table 4: Steering Function and Trajectory Accuracies: Operating on Upper

Boundary, without Measurement Uncertainties

(95,000 ft. < intercept point < 97,518 ft.)

Alpha RMS Error, deg. * Miss Distance, ft.

Static Dynamic S/D Ratio Static Dynamic S/D Ratio

Mean 0.168 0.052 3.2 Mean 396 14.2 2.8

Std. Dev. 0.129 0.051 2.5 Std. Dev. 29.1 13.9 2-1

Max 0.258 0.100 2.6 Max 99.0 47.4 2.1

Median 0.140 0.034 4.1 Median 25.8 8.3 3.1

*alpha w aerodynamic znsde of attack (steering Junction)

D-27
(23)

I
I

Table 5: Steering Function and Trajectory Accuracies: Operating on Lower I
Boundary, without Measurement Uncertainties

(72,121 ft. < intercept point < 75,000 ft.) I
Alpha RMS Error, deg. * Miss Distance, ft.

Static Dynamic S/D Ratio Static Dynamic S/D Ratio

Mean 0.123 0.038 3.2 Mean 23.2 223 1.04

Std. Dev. 0.059 0.028 2.1 Std. Dev. 11.7 7.9 1.48

Max 0.151 0.061 2.5 Max 492 38.0 1Z

Median 0.120 0.034 3.5 Median 22.0 21.6 1.02

alpha m aerodynamic angle of attack (steering functon)

6.3 Robustness: Accuracies when Extrapolating in Time
without Measurement Uncertainties

As discussed earlier, the networks were synthesized using data for only the 3
first 38.5 s. of flight. A test was performed to compare the capacities of the static and
dynamic networks to guide the missile trajectories beyond the flight time used for
their syntheses. The results obtained are shown in Table 6 and Figure 13 below. A
comparison with Table 3 reveals that median RMS errors in alpha are
approximately six times the median RMS errors in the design region, yet the
median miss distances increased by only forty percent. Once again, the dynamic
network exhibits approximately a four to one advantage over the static network in
median alpha RMS error.

Table 6: Steering Function and Trajectory Accuracies: Extrapolation in Time,
without Measurement Uncertainties

Alpha RMS Error, deg. * Miss Distance, ft.

Static Dynamic S/D Ratio Static Dynamic S/D Ratio

Mean 0.933 0.336 2.8 Mean 195 7.6 2.6

Std. Dev. 1.164 0.467 2.5 Std. Dev. 21.3 8.5 1.9

Max 2.362 1.007 2.3 Max 80.2 37.4 2.5
Median 0.335 0.089 3.8 Median 9.5 5.0 1.90

alpha w aerodynamic angle of attack (steering function) 1

D-28
(24)

100
SStatic Static
Dynam0 Dynamic

S 60.

XC

20 2.--

0

Mean Max Median Mean Max Median

Figure 13: Steering Function and Trajectory Accuracies: Extrapolation in Time,
without Measurement Uncertainties

6.4 Robustness: Accuracies within the Design Region
with Measurement Uncertainties

Measurement uncertainties were introduced to determine their influence on
accuracies of the static and dynamic networks. Altitude (H) and missile downrange
distance (N) were given RMS uncertainties of 2 ft., while H4 and 1N were given RMS
uncertainties of I ft./s. Comparing the results in Table 7 and Figure 14 with those in
Table 3, it is seen that median alpha RMS error increased by a factor of 2.7 for the
static network and 2.5 for the dynamic network.

Table 7: Steering Function and Trajectory Accuracies: Operating in Design
Region, with Measurement Uncertainties

Alpha RMS Error, deg. Miss Distance, ft.

Static Dynamic S/D Ratio Static Dynamic S/D Ratio
Mean 0.151 0.036 4.2 Mean 6.5 4.2 1.5

Std. Dev. 0.062 0.014 4.4 Std. Dev. 3.9 2.5 1.6

Max 0.187 0.042 4.5 Max 16.9 113 1.5

Median 0.147 0.035 4.2 Median 6.0 4.0 1.50

alpha a aerodynanic angle of attack (steering function)

D-29
(25)

I

0.20 _ _ _ _ _ _ _ _

* static sai
. " Dynamic

010 I
0.00 .

Mean Max Median Mean Max Median

Figure 14: Steering Function and Trajectory Accuracies: Operating in Design
Region, with Measurement Uncertainties

6.5 Robustness: Simplicity of the Designs

A key indicator of the robustness of network designs is the number of degrees I
of freedom used in the network. The simpler the model, the less prone it is to
overfit. In combination, the two dynamic networks (startup and primary networks)
had a total of 24 terms, whereas the static networks had 43 terms total. It is expected
therefore that the dynamic networks are likely to generalize better than are the static
networks. 3
6.6 Maximization of Missile Terminal Speed

Both network designs maximized missile terminal speed: the mean terminal I
speed was 1785 ft./s. for both. There was little deviation between the two because
both network systems modeled the calculus of variations solution accurately.

6.7 Summary of Performance Results

Table 8 below summarizes the results shown in Sections 6.1 through 6.6. U
I
I
I
I
I

D-30
(26)

Ic ln
I' -i ___

*~c Ln *c

cc -n 'cu CN 10

I '42

W (n. c : g.In .v

I~~t ccU (. O1

P-401 0.

vi foc c

00

(U4tv ~h1.-

tvU*
(U '. '-00

(UU .

tu .~.
tv toI *v

I
I

7. CONCLUSIONS

The TPBV missile guidance solution has provided an excellent framework in
which to compare the static and dynamic neural networks. The particular
application considered involved the guidance of a tactical air-intercept missile,
guided from a specified initial condition to a horizontally moving target.

The proper synthesis method depends on the application. In general, an I
equation-error synthesis method is appropriate for prediction, while output-error
synthesis methods should be used in control problems. In addition, initial
structures for dynamic controller nodes can be found using equation-error synthesis
which requires less computational time. Once the general structure is found, an
output-error synthesis algorithm can search for the optimum model coefficients.

The results show that both the static and dynamic network designs provide
good steering function accuracy along the missile trajectory, and good terminal
position accuracy relative to a specified intercept point. However, the dynamic
network models the steering function approximately four times more accurately
than does the static network. Performance results on several robustness tests,
including operation on the boundaries of the design region, extrapolation in time,
and operation in the presence of measurement uncertainties, all show that the
dynamic network is more robust than is the static network used in this application.
The dynamic network required approximately half the degrees of freedom of its
static counterpart, diminishing the possibility of overfit. Both networks performed
well in maximizing terminal speed.

I
I
I
I
I
I
I

D-32
(28)

APPENDIX D
REFERENCES

1. Abbott, D. W., and R. L. Barron, Active Control of Complex Systems Via
Neural Networks Having Internal Feedback Paths and Time Delays, Barron
Associates, Inc. Technical Progress Report 1 under Contract N00014-89-C-0137,
August 15, 1989.

2. Barron, R L., D. W. Abbott, et al., Trajectory Optimization and Optimum-
Path-to-Go Guidance of Tactical Weapons (four volumes), Final Report by
Barron Associates, Inc. for HR Textron, Inc. under Naval Weapons Center
Contract N60530-88-C-0036, January 1989.

3. Golub, G. H., and C. F. van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1985.

4. Press, W. H., B. P. Flannery, et al., Numerical Recipes, Cambridge University
Press, New York, 1986.

5. Barron, A. R., "Predicted Squared Error: A Criterion for Automatic Model
Selection", Self-Organizing Methods in Modeling: GMDH Type Algorithms
(S.J. Farlow, Ed.), Marcel Dekker, Inc., New York, Chap. 4, pp. 87-105, 1984.

D-33
(29)

APPENDIX E

Contract N00014-89-C-0137
Technical Progress Report 3

ACTIVE CONTROL OF COMPLEX SYSTEMS VIA DYNAMIC
NEURAL NETWORKS:

COMBUSTION PROCESSES IN PROPULSION SYSTEMS

B. Eugene Parker, Jr., Ph.D.
Richard L. Cellucci

Dean W. Abbott

April 8, 1991

Prepared for.

DEPARTMENT OF THE NAVY
Office of the Chief of Naval Research

Defense Sciences Division
800 North Quincy Street

Arlington, Virginia 22217-5000

Attention: Dr. Robert J. Hansen, Director

Prepared by:

BARRON ASSOCIATES, INC.
Route 1, Box 159

Stanardsville, Virginia 22973-9511
(804) 985-4400

E-1

I
I

TABLE OF CONTENTS

Abstract ... 1

1. Introduction ... 1

2. Polynom ial N eural N etworks ... 2
2.1 Background ... 2
2.2 Ertimation Using Polynomial Neural Networks ... 5

2.2.1 Off-Line Estim ation .. 5
2.2.2 On-Line Estimation .. 6

2.3 Dynamic Polynomial Neural Networks ... 6
2.3.1 Initialization of Dynamic Networks ... 7
2.3.2 Synthesis M ethods for Dynamic Nodes ... 8

3. Plant Identification ... 10
3.1 Background ... 10
3.2 Estimation of the Kernels ... 11

3.3 Reconciliation of Volterra-Wiener Approach with Polynomial Neural Networks 14
3.4 Reconciliation of Least Squares with Cross-Correlation Computation of Kernels 16
3.5 Reconciliation of Recursive Least Squares (RLS) with Cross-Correlation Computation

of Kernels ... 20

4. Control .. 21

5. Results ... 22
5.1 Experimental Data ... 22
5.2 Plant Identification ... 22
5.3 Memory-Feedforward Polynomial Neural Networks ... 26
5.4 Memory-Feedback Polynomial Neural Networks ... 29
5.5 Plant Control .. 29

6. Discussion .. 44

8. References .. 47

I
I
I
I

E-2 I(i)
I

Dynamic Polynomial Neural Networks Applied to Active Control of
Combustion Processes in Propulsion Systems

Abstract

Dynamic polynomial neural networks (PNNs) are used to predict the output of a combustion
process and to synthesize a neural network controller. In addition, the PNN approach is reconciled
with the classical Volterra-Wiener system identification technique often used to identify plant
models. PNN techniques are shown to offer advantages over this traditional system identification
methodology, both in terms of modeling accuracy and in reducing the number of parameters necessary to
achieve a given accuracy. In particular, memory-feedback PNN performance was shown to exceed that
of memory-feedforward PNNs while using fewer coefficients to fit the data.

1. Introduction

Techniques for performing system identification for the purpose of process control are well
described in the literature. In one sense, the various approaches that have been developed may be
distinguished based upon the amount of a priori information that is available for use in the modeling
process. For example, if a structural model based on the physical process under consideration exists, the
task of system identification is reduced to one of parameter estimation. If no such structural model is
available, the task of system identification is inherently more complex.

Polynomial neural network (PNN) techniques are applicable both with and without a priori
structural models. In this investigation, we are concerned with the identification of a combustion
process (plant) for which no structural model is available. A classical approach that is also
applicable in this case is based on Volterra-Wiener theory. In general, both the PNN and Volterra-
Wiener techniques apply to analytic multi-input, multi-output, nonlinear, nonstationary systems.
Because PNNs allow feedback of their outputs, they are not limited to application in systems having
finite memory,1 as is true for Volterra-Wiener techniques.

Fig.1.1 illustrates the combustion control process; amplitude modulation (AM) is used to excite a
speaker, which provides an acoustic disturbance that affects the flame. Flame height or quality is
measured using a photodiode (PD). The objective of the controller is to provide an AM signal to
regulate the process, i.e., to maintain the flame at a value selected by the operator. Since the
combustion process under consideration here has finite memory,2 both approaches may be used in
designing a controller.

I A system's memory is the time it takes for the system to complete its response to an instantaneous
input. Excluded therefore are sytems such as oscillators, which have infinite memory.

2 Note that even though the input to the speaker in Fig. 2.1 is an amplitude modulated sinusoid, the
unmodulated carrier signal is considered the zero-input condition and is not modeled here.

E-3
(1)

I

Flam- Photodiode and I
MA) Detector

Aamw V>

Modulator +

Carrier Signal
Modulated (480 Hz)SignalI

Figure 1.1: Typical Combustion Experimental Controller Configuration (NWC) I
In the discussion below, the PNN approach is reconciled with the classical Volterra-Wiener

system identification technique. PNNs are shown to be more general, since the classical approach I
represents a memory-feedforward PNN, meaning that there is no feedback of the output estimates.
Moreover, the PNN formulation is shown to offer advantages over the classical approach both in terms
of modeling accuracy and in terms of the number of degrees of freedom necessary to achieve a given level
of accuracy.

In addition, PNNs allow easy incorporation of any available a priori structural information in
the modeling process, allowing very flexible modeling. A priori information is much more difficult to Itake advantage of using other modeling techniques, such as in Volterra-Wiener system identification,

when complete structural information is not available.

For a glimpse ahead at the excellent modeling results achieved on the limited set of PNN
training data available, the reader is referred to Figures 5.9 and 5.10. These figures illustrate the
predictive accuracy of memory-feedback PNNs as compared to the actual process data.

2. Polynomial Neural Networks I
2.1 Background

Polynomial neural networks (PNNs) are compositions of Kolmogorov-Gabor (KG) multinomials,
which are algebraic sums of terms. The KG multinomial is

y = ao + Xaixi + 7 7 aijxixj + 7 7 7 aijkxixjxk + ... (2:1)
i j i j k

E-4(2)I

The KG multinomial can model any analytic single-valued transformation. All neural
networks synthesized using analytic nodal elements (including the now popular linear-sum-with-
sigmoid element) can be closely approximated by a finite KG multinomial. The classical Farley and
Clark elements [19541, Rosenblatt's "Perceptron" [19581, and Widrow's "Adaline" [1960] used zero-
crossing detectors rather than sigmoids; those also can be approximated by a finite KG multinomial.

Barron Associate's Algorithm for Synthesis of Polynomial Networks (ASPN), a composition-
of-functions synthesis method, builds a KG transformation from linear elements and nonlinear second-
degree and third-degree KG elements; ASPN quickly and efficiently creates specific KG multinomials
required for given applications. ASPN also automatically incorporates transcendental functions,
including the sigmoid, if and where such functions are relevant in the network (it is not usual for very
many transcendental functiorns to be required). Thus, by using a small far'ly of KG element and
transcendental element types, ASPN synthesizes essentially any of the co -non neural network
transformations, but does this without overfitting, as is explained below.

As shown in Table 2.1, polynomial networks are significantly different from conventional
"sigmoidal" neural networks, the latter of which are used mainly for classification tasks. Sigmoidal
networks are structured in advance by the designer, whereas ASPN-type algorithms build the network
from the simplest possible form to a just-sufficient level of complexity. Pre-structured networks tend to
have excessive internal degrees of freedom and therefore often overfit the synthesis data. In addition,
they are often designed by the analyst using a trial and error approach; with ASPN, synthesis time is
dramatically reduced since it selects the relevant network architecture. Moreover, one usually cannot
guarantee that a pre-structured network has the specific interactions between variables and the
nonlinearities that are needed for a given application. Neural network synthesis using a composition-
of-functions algorithm based upon the KG multinomial (such as ASPN) provides the needed
transformation and a just-right level of complexity.

There are many kinds of polynomial network nodal elements, but there is typically only one
type of node used in sigmoidal networks, namely a weighted linear sum feeding into the sigmoidal
transformation. In addition, there are often thousands of nodes in sigmoidal neural networks, whereas
ASPN-type algorithms use as few nodes as possible. Experience has shown that the simpler the
network, the less sensitive it is to noise and the better able it is to generalize, because it has fewer
internal degrees of freedom.

Currently, the practice used by some to avoid overfitting in neural network syntheses is to add
noise to the data during fitting. It can be shown that the Fisher information matrix, which
characterizes the asymptotic efficiency of best estimators, is degraded by the corruption-by-noise
method; BAI believes that it is preferable to employ constrained fitting criteria, as discussed below.

A main advantage of sigmoidal neural networks is their ability to process a large number of
inputs. Their main disadvantage is inability to model flexibly. Polynomial networks have more
complex and, therefore, more "intelligent" nodes than just the sigmoidal transformation. A key ability
of ASPN is to combine these "intelligent" nodes rapidly in the best way possible. Each trial ASPN
network can be synthesized and evaluated on the design data base in a fraction of a second. Sigmoidal
networks are traditionally pre-structured by the analyst and trained using a form of gradient search,
which can be a slow process, prone to converge to false minima.

Table 2.2 outlines the key principles that have been learned about the syntheses and
applications of neural networks. These principles are violated by most other neural network syntheses
algorithms in present-day use.

Applications involving PNNs are often separated into two classes, estimation (which includes
prediction and filtering) and classification. Moreover, estimation comprises forward (predictive) and

E-5
(3)

I
I

Table 2.1: Approaches to Neural Network Synthesis

CONVENTIONAL APPROACH BARRON ASSOCIATE'S APPROACH

" Use of large, pre-structured networks with * Simple structures learned rapidly via I
adaptation of coefficients composition-of-functions algorithm

* Linear-sum-with-sigmoid nodal elements • Nonlinear elements based upon
Kolmogorov-Gabor multinomial I

" Unconstrained modeling criteria • Criteria constrained by information-theory
measure of model degrees of freedom I

* Artificial exemplars created by adding noise • Emphasis on robust designs achieved with
to true exemplars information-theoretic methods 3

* Recursive learning using least mean square - Combined batch-supervised and recursive
gradient descent techniques learning using predicted squared error,

recursive least squares, recursive prediction I
error, and/or Levenberg-Marquardt methods

" Static networks (internal feedforward * Static networks and dynamic networks
connections only, no internal time delays or (internal feedbacks, internal time delays) to
feedbacks) minimize network degrees of freedom and

minimize noise sensitivity

Table 2.2: Key Principles in Neural Network Syntheses [Barron et al. 19901

" Nodal elements should be analytic and incorporate cross-products as well as sums of their inputs. n

" Network structures should evolve from simplest forms to levels of just-sufficient complexity as
syntheses proceed.

" Excessive complexity of neural networks must be avoided to prevent overfitting and consequent
unreliability when processing new data.

" Global searches are indispensable in assuring network optimality. I
" Information theoretic (statistical inference) criteria, including overfit penalties, should be used to

govern network syntheses. Different performance criteria apply to estimation-network and m
discrimination (classification)-network syntheses. Estimation techniques require the use of
predicted squared error, whereas classification techniques should use logistic-loss techniques.

I

E-6
(4)

inverse (control) applications. Since combustion process modeling falls into the this category,
estimation networks are discussed in more detail below.

2.2 Estimation Using Polynomial Neural Networks

Reviewing the status of work by BAI on fitting criteria, a generic statistical criterion has been
developed to govern composition and selection of functions during network syntheses. This criterion
takes the form

n Ak
J = i Idyi, f (X-_, + n (2:2)

where J is the criterion value (to be minimized) for a given output variable y, n is the number of input-
output-pairs (data vectors) in the synthesis data base, yi is the ith value of the output variable in the

A
data base, is the ith value of the input vector in the data base, 0 is the estimate of the optimum

A
parameter vector for the network, and k is the dimensionality of ft. The loss or distortion function,

A
d (yi, f), can take various forms. Of particular interest for estimation networks is the squared-error

loss

AA

d (yi, f i) = _- (Yi- f)2 (2:3)

in which a2 is the network error variance (constant). Using Eq. 2:3 in Eq. 2:2 [Barron 1981; Barron 1984;
Barron and Barron 19881

PSE = 232J = FSE + 232k/n (2:4)

where PSE is the predicted squared error of the network, FSE is the average fitting squared error,
n

- f i) , and 2a2 k/n is the complexity penalty used to constrain the fit. (Nearest-neighbor tests

may be used prior to network syntheses to determine conservative values of a2). PSE is also sometimes
used for preliminary syntheses of classification networks.

The least-squares allurithm is suitable for fitting static polynomial estimation networks off-
line and is used in ASPN. ASPN and recursive least squares (RLS) permit on-line adaptation of these
networks. Recursive prediction error (RPE) and the discrete Levenberg-Marquardt (DLM) algorithm
provide off-line fitting capabilities for dynamic estimation networks. On-line adjustment of dynamic
network parameters may be achieved with a variation of RPE or the recursive Levenberg-Marquardt
(RLM) procedure.

2.2.1 Off-Line Estimation

Estimation networks are constructed by ASPN using the predicted squared error (PSE) criterion,
which not only computes the fitting error of the model, but also takes into account the model
complexity. PSE penalizes more complex network structures more heavily to emphasize that a simpler

E-7
(5)

I
I

model is usually better, thereby avoiding the overfit problem. Thus, ASPN is able to construct a
network of optimum complexity without overfitting. Further details may be found in Section 3.4.

2.2.2 On-Line Estimation

Recursive (on-line) updating of static polynomial networks is accomplished through the use of I
recursive least squares (RLS) [Ljung and S6derstr6m 1983; Ljung 1987; S6derstr6m and Stoica 19891. By
applying the RLS algorithm successively to each node in the polynomial network, the whole network
is effectively updated. Initially, RLS is given the values of the parameters, 0, and the regression I
matrix, R. Both of these are generated off-line. R is then inverted to produce an updating matrix, P.

The RLS algorithm updates Q and P each time it is applied. A weighting factor X (which must
be positive), can be chosen for each new observation (X is set to unity during off-line synthesis). This
weighting factor determines the rate at which the polynomial learns. The following equations are
solved to update ai and F; in the equations, . represents the independent variables in the model:

%. = Dold + L [y_ %Told] (2:5)

L = Poldt (2:6)X +T Pold t

= old T Pold (2:7)

S old- TPold

These formulas apply only to polynomial nodal elements that have been fitted with the least-
squares criterion. Similar equations exist for recursive maximum likelihood algorithms, which can I
update polynomial networks that have been fitted using the logistic-loss criterion. See Section 3.5 for
further details.

Recursive learning, while advantageous for on-line learning, is suitable only for networks I
having defined structure. Batch-supervised learning, using a pre-stored data base (batch), allows
composition-of-functions learning, and usually is the method of choice for pre-training of neural
networks. An algorithm that combines the two types of learning in a unified program that provides
composition-of-functions learning on-line as well as during pre-training is under development.

2.3 Dynamic Polynomial Neural Networks

Dynamic (reverberatory or recurrent) polynomial neural networks (PNNs) contain time-delays
and/or self-feedbacks within one or more of the nodes or sub-networks comprising the network. By
including self-feedback conn,.ctions, dynamic PNNs can:

* compute time-varying transformations given static inputs
perform infinite impulse re:ponse (HR) filtering operatic ns in addition to finite impulse I
response filtering (FIR) operations

* provide a phase-shift operator between time-varying inputs.

Dyna.mic PNNs require fewer internal degrees of freedom (i.e., coefficients) than do static
networks created for the same application. The greater simplicity of dynamic networks results in
improved model accuracy and robustness. Software has been developed for the synthesis of nodal

E-8
(6)

I

elements having internal feedbacks and time delays. An algorithm that will provide feedback
connections between elements in the same or different layers is under development. It has been
demonstrated [Nigro, Abbott, and Barron 19901 that dynamic neural networks can be significaaly (up to
four times) more accurate than their static counterparts in steering accuracy and trajectory control of a
tactical air-intercept missile. The message here again is that the simpler the network, the less
sensitive it is to noise and the better able it is to generalize. However, there is a price to pay: off line,
the synthesis of dynamic PNNs requires iteration and typically more computation than static PNNs; on
line, dynamic PNNs require initialization before they can provide output estimates.

IThe following definitions are used in the discussion below:

* Static Node: a node with no internal self-feedbacks or time delays (see Fig. 2.2)

0 Dynamic Node: a node with self-feedbacks and/or input time delays internal to the node.
Note that self-feedback connections are implemented with time delays in the self-
feedback paths.

* Non-Memory Feed-forward (NMFF) Node: a static node.

* Memory Feed-forward (MFF) Node: a dynamic node with internal time delays of the
inputs, but no self-feedback connections.

* Memory Feedback (MFB) Node: a dynamic node with internal self-feedback connections,
but not necessarily with internal time delays of the inputs (see Fig. 2.3.) Note that an MFB
node contains the node connections of NMFF and MFF nodes, along with self-feedback
connections.

* Shift Register: a device in the dynamic node that stores previous input or output estimates.

* Analytic Function
I I AfrIx _I t

from xt) - (linear, nonlineai, y W
data base and/or transcendental

Ifunction)

IFigure 2.2: Static Nodal Element

I
2.3.1 Initialization of Dynamic Networks

Dynamic networks require initialization, using input and/or output values to fill the shift
registers of the feedforward and self-feedback connections. This does not pose a problem if no estimate
of the output is needed at to , i.e., before the shift registers of the dynamic node are filled. For example,
in prediction applications the first output of the network occurs after enough of the process has been
seen (i.e., after the dynamic network shift registers have been filled). In other applications, however,
such as in tracking and control, output estimates must be generated beginning at time tO, and therefore
another controller, such as a static network, must be used until the dynamic network is initialized.

E-9
(7)

I
I

2.3.2 Synthesis Methods for Dynamic Nodes

There are two ways in which to synthesize MFB dynamic nodes: equation-error and output- I
error.

Equation-Error Method. The output estimate is found using previous output values obtained
from the data base, not from output estimates of the dynamic node. The equation-error method
does not require iteration for synthesis; in general, it is computationally simple.

IMBDynamic NodeI l

from t * x (t) _
bAt

database xt (t-Analytic Function

x(t -n) (linear, nonlinear, y (t)Atand/or transcendental , -

function)
A AI ~II

I .,h...A.) Y~t W

At

I I

v(t -mat)
At

Lshif register

Figure 2.3: Dynamic Nodal Element

Figure 2.4: MFB Network Synthesized as a Predictor

Output-Error Method: The output estimate is found using previously estimated output values. I
Because the node must first produce an output before it can be used as a new input, iteration is
required during model synthesis; output-error modeling thus requires more computation than
equation-error syntheses.

The preferred method of training depends on the application in which the network is to be
used. Equation-error syntheses are best suited for MFF predictors, as shown in Fig. 2.4, because output
estimates are not used as future network inputs; thus, output estimates should not be used during
synthesis.

E-10
(8)I

On the other hand, when a controller or tracker is to be synthesized, the use of output-error in
MFB model synthesis is appropriate because output estimates directly influence future network outputs,
as is shown in Fig. 2.5. An output-error synthesis trains the network in the same way in which it will be
used; thus, current output estimates should affect future output estimates during synthesis.

N_ Wt MFB Controller y W(roes x (t+ A0)
or TrackerPrcs -

Figure 2.5: MFB Network Synthesized as a Controller or Tracker

Table 2.3 summarizes the off-line synthesis algorithms that are appropriate for NMFF, MFF,
and MFB nodes. The algorithms used for equation-error and output-error syntheses are least-squares
and a modified Levenberg-Marquardt search, respectively. Least-squares, a linear regression
algorithm, requires linearity with respect to the node coefficients, which is true only for NMFF, MFF,
and MFB (equation error) nodes. The Levenberg-Marquardt algorithm [Cadzow 19901 is a nonlinear
regression algorithm and is appropriate for nodes that are nonlinear with respect to the coefficients
(MFB output error nodes).

Table 2.3: Off-Line Synthesis Methods for Prediction, Control, and Tracking

Application Node Type Synthesis Preferred Iteration
Algorithm Synthesis Needed?

Method Algorithm

Prediction or Control NMFF N/A Least Squares No

Prediction or Control MFF N/A Least Squares No

Prediction Equation Error Least Squares No

Control or Tracking MFB I Output Error Levenberg- Yes
Marquardt _s

E-11
(9)

I
I

3. Plant Identification

3.1 Background

The basic idea behind plant or system identification is the use of input-output measurements to
determine the impulse response or kernels of the system. For a single-input, single-output, linear,
stationary system having impulse response h(), the response of the system to any input excitation x(t)
may be determined by convolving the system impulse response with the input,

y(t) = k() x(t- T) dr (3:1)

For causal systems, the lower limit of the integral may be set equal to zero since k(t) = 0 for t < 0. For

nonstationary systems, the impulse response is a function of both time t as well as lag r, viz. k(t, c). I
Nonstationarity changes the computational details somewhat, but the basic solution approach is not
otherwise affected. Unless specifically mentioned in the discussion below, stationarity in both the
input signal and in the plant itself is assumed. 3

Vito Volterra showed that the basic concept of the linear impulse response could be extended
for the case of nonlinear systems, such that the system output is represented using higher-order
convolutions of the nonlinear kernels with multiple independently delayed input signals. In general,

00 00

y(t) = ko + f k1() x(t-r) d + f k2(T,r 2) x(t -'C1) x(t - 2) dr1 d'C2 + H.O.T.3 (3:2) 3
-00 -00

or 3
y(t) = Y Gm[km(tl, ...' tm); x(t'), t' _ 01 (3:3)

m=O

where Gm[km(tI ..., tm; x(t))] represents the mth-order Volterra functional 4 . The first three Volterra

functionals are given in Table 3.1.

In the functional series, k0 represents the zero-order kernel (i.e., the average value), kl(t) the

linear kernel, k2 (r1, r2) the second-order kernel, and so on for higher-order nonlinearities. The zeroth-

order kernel may, in general, be taken to be zero, since if the input x(t) = 0, with a change of variables

I
I

3 H.O.T. stands for higher-order terms.

4A functional is a function whose argument is also a function, but whose value is a number.

E-12
(10)

Table 3.1: First Three Volterra Functionals

G0[k0; x(t)] = k0

G1[k1; x(t)] = k l (z) x(t -) dr

G2[k2; x(t)] = k2(r, T2) x(t - rl) x(t - 2) dr1 dr 2

we may make y(t) = 0. For a linear system, the impulse response is kl(r); k2 ('rl, T2) and higher-order
kernels are zero. For nonlinear systems, these higher-order terms become important. For example, the
impulse response of a nonlinear system is

y(t) = k0 + k1(t) + k2(t, t) + H.O.T.; (3:4)

note that the impulse response of a nonlinear system includes the diagonal terms of all kernels, not just
the first-order kernel.

Various techniques may be used to obtain the kernels from input and output data records.
Nobert Wiener showed that if the input is a Gaussian white-noise (GWN) signal, then each term of
the functional series can be made orthogonal for such a stimulus, and each kernel can be measured
independently. Orthogonality means that E(Gi[ki; x(t)] Gj[kj x(t)]} = 0, for i * j. In general, the Wiener
kernels are different from the Volterra (system) kernels; for systems with nonlinearities no greater
than second-order, the Volterra and Wiener kernels are the same. The first three Wiener functionals
are given in Table 3.2.

In general, the Wiener kernels are polynomials in P, the input signal power, with coefficients
that depend on higher-order Volterra kernels. This attests to the efficiency of the orthogonal basis of
the Wiener representation since, for example, the first-order Wiener kernel of a nonlinear system will
represent some system nonlinearities. Thus, the first-order Wiener functional of a nonlinear system is,
in general, different from the linear part of the system (i.e., first-order Volterra functional). In
addition, orthogonalization of the Wiener functionals means that truncating the series after the nth-
order term provides the best nth-order model in the mean-square-error sense. It should be noted that
the Volterra functional series can be orthogonalized for any signal possessing suitable auto-correlation
properties.

3.2 Estimation of the Kernels

There exist several approaches to estimating the Wiener kernels, such as that of Wiener-Bose,
which is based on expanding the kernels in terms of Laguerre and Hermite functions. Such methods
have, to a large extent, been replaced by less cumbersome cross-correlation techniques, which may be

E- 13
(11)

7

I
I

Table 3.2: First Three Wiener Functionals I
G0 [h0; x(t)] = h0

Gj[hl; x(t)] = J hl (T) x(t - ,) d-z

00 0

G2[h2; x(t)] = h2 (?l , r2) x(t -rd x(t - -2) d dr 2 - P J h2
(

1, ' 2) dr l '

where P is the power level of the Gaussian white-noise (GWN) input.

I
implemented in either the time or frequency domains. The cross-correlation technique is derived by
multiplying both sides of Eq. 3:3 by x(t - a) and taking expectations on both sides of the equation. For
example, for the first-order Wiener functional,

003

y(t) - Jhl(r) x(t-,r) dr (3:5)

or

E[y(t)x(t-o)] = E[x(t-a) i hi(t) x(t -) dT] (3:6)

or

00 I
Oyx(Y) = Jhi() E [x(t-a)x(t-r)]dr (3:7)

Because x(t) is a GWN signal, I
E [x(t- a) x(t-)] = oxx(r-a) = PS(r-a) (3:8) 3

where 8 is the Dirac delta function defined as 8(r - a) = I when -r = cr, and 8(r - a) =0 when 'r * a.
Thus,

I
E- 1 4
(12)

eyx(a) = J i(a) oxx(T- a) dcr (3:9)

-
hJ(a) P 8(@ -a) d (3:10)

SP h1 (a) (3:11)

or

h1 (a) = (3:12)

P

where P = oxx(O).

Carrying out the same process for the second-order kernel yields

0yx(Ol, a2)

h2a , 02) = 2Pl2 (3:13)

The overall approach to computing the kernels is outlined in Table 3.3.

Table 3.3: Steps in Computation of the Wiener Kernels

Step Description

1 Compute the response of the system to a GWN stimulus.
2 Average the response to obtain h0 , the mean value.
3 Subtract h0 from y(t) to obtain y0(t), the zero-mean response.

4 Cross-correlate y0(t) with x(t - 0r) to obtain hl(r).

5 Convolve the input sequence x(t) with hl(T) to obtain the modeled response yl(t).
6 Subtract y1(t) from y0 (t) to obtain the nonlinear response residual.
7 If the nonlinear response residual in Step 6 is insignificant, go to Step 4, substituting

higher-order correlations and convolutions in place of the second-order computations;
else, go to Step 8.

8 Done.

E-15
(13)

I
I

3.3 Reconciliation of Volterra-Wiener Approach with Polynomial Neural Networks

As shown in Eqs. 3:2 and 3"3, the kernels represent the coefficients of the model used to estimate
the output of the system for new inputs based on a functional series. Considering for the moment the
single-input, single-output system discussed above, we see that estimating the system's output for any
input involves convolving the input data with the kernels,

I
00

y(t) f... kn(' 1 ,n)x(t - l) ' 'x(t -rn)drl ' ' ' dn
__ 00

(3:14)

For the first-order kernel, at each point in time at which an estimate is needed, this requires
summing the product of k1 (in reverse order) with the input data:

k(i) x(m-i) At (3:15) I
i

For the second-order kernel, this involves summing the product of k2 (in reverse order) with a I
product of the input data: I

k2 (i, j) x(m- i)x(m- j) At2 (3:16)

jI
This is equivalent to the approach taken in modeling with polynomial neural networks, where

compositions of KG multinomials (algebraic sums of terms) are used. Recall that the KG multinomial is

y(t) = ao + aixi + i aijxixj +... (3:17)

Thus, the KG coefficients and the Volterra-Wiener kernels are related as follows:

a0 =k
ai = k(i)

aij = k2, j) (3:18)

etc.

Note that although we have been concerned here only with univariate time series, both the
Volterra-Wiener and PNN techniques are perfectly compatible with multivariate data. This is
illustrated in Fig. 3.1 for the two-input, one-output, second-order system. The corresponding PNN
would have the form

E-16
(14)

x(t) UMt

F I 1 1 I -- I

txX hl x *" x hz*x* u h2UU U U hlu

Y(t)

Figure 3.1: Kernel Diagram for Two-Input, One-Output, Second-Order System
[Marmarelis and Marmarelis 1978]

y(t) = ao + aix i + biui + _aijxixj . 7_ bijuiuj + X cij xi uj + . . .(3:19)
j i j i j

Fig. 3. illustrates the corresponding kernel diagram for a system with two inputs and two
outputs. The corresponding PNN would have the form

y(t)= ao + aixi + biui+ I aijxixj + bijuiuj + cij xiuj + ... (3:20)
i i i3j 1 j 1j

w(t) =c0+ cixi + diui+ I dijxixj + I eijuiuj + 7,fij xiuj + .(3:21)
i i i 13 Ij

An alternative formulation related to the white noise system identification method described
above, which fully reconciles the PNN and Volterra-Wiener techniques, was suggested by Marmarelis
and Marina, elis [19781. It involves creating a data base of input-output vectors x and y, such that the
output at any time t, yj(t), corresponds to _i(t), where ji(t) is comprised of the current input and a
nimber of previous inputs corresponding to the memory of the system. While a white-noise input signal
could be used to generate new input and output vectors, this is not a requirement. Instead, a computer

E-17

(15)

I
I

x(t) UM

I

I

y(t) w(t) i

Figure 3.2: Kernel Diagram for Two-Input, Two-Output, Second-Order System I
[Marmarelis and Marmarelis 1978] I

might be used to generate all possible input stimulation patterns. Since, in practice, all data is sampled
using a finite resolution (i.e., number of bits), this is theoretically possible. This would reduce the time
required to identify a system, since a white-noise signal is potentially repetitious and therefore
redundant. For a single-input system, for example, using n-bit sampling would require 22n2 input
patterns, which quickly results in an excessive number of input patterns over which the system must be I
excited. It is possible that the proportion of data collected in different regions of the stimulus space
could be varied to reduce this number and to improve results where the identification process requires
more temporal and/or spatial resolution. Once such a data base is generated, a PNN can be used to fit
the data over the whole data base; this PNN would then represent the general (i.e., linear and
nonlinear) transfer function of the system. I.
3.4 Reconciliation of Least Squares with Cross-Correlation Computation of Kernels

In practice, the cross-correlation identification technique outlined above works well for ideal
GWN, where exx(T) = P for t = 0, and xx(,r) = 0 for z * 0. In practice, the stimulus signal is often not
ideal GWN and the kernels require scaling to achieve accurate modeling. We may write Eq. 3:9 in
discrete form as

(k= hl(i) exx(i-k) At, where k = 0, 1, ..., m (3:22)
i=0 I

E- 18
(16)

Then, if we assume that oxx(j) is effectively zero for j > n,

k+n
y = h(i) 0xx(i - k) At, where k = 1, (3:23)

i=k-n

which can be written in matrix form as

0x(). ox(1) ... ox(n) 0 0 h(0) 1 y(O
Oxx(1) Oxx() Oxx(1) .. xx(n) 0 h(l) Oyx(1)

F .*-.=(3:24)

0 0 ... oxx(n) oxx(n-1) ... O1xx(0) h(m) Lyx(n'U)

noting that oxx(i) = exx(-i) and denoting At exx(i) by exx(i). This system of equations is easily solved
using batch or recursive least squares techniques. They represent a model of the form

Y(t) =4,f0 (3:25)

where y is the output vector, 0 is the input data matrix, and f is the parameter vector. We want to

minimize the Fitting Squared Error (FSE), given by

1 2
' n' -IIW 2 (3:26)

A

y= 4D0 is ihen the best approximation to y using the L2 norm (least-squares). The data matrix, 0, has

variables in m columns and observations in n rows. To construct D for the combustion process data, the

original n x 1 time series is used to form the first row of (D, and subsequent rows are formed by lagging the

time series by one more than the previous row for each new row. Thus, if we are interested in

identifying the model out to m lag values, 4D will be an n x m data matrix,

pb p u .-- 2jm 3 :Yl)
02 03 04 .. m+l 02 Y2

" i =(3:27)

o 0 0 .. 0 ,9 L

Multiplying" = by 4 T produces4D 0=0Ty or

E-19
(17)

I

20? Y0O0il XA -- YOi4i+m 01 0i xjy

8 L --](3:28)
2 m j L j+ mYj

where i 1 ... n. However, = oo),XjOii+I = oxx(l), and

k+n
Xii+m = "xx(m); thus OT"Z(I E hl(i) oxx(i - k) At. Similarly,

i=k-n

.Oiyi = oYx (O), XOi+lYi = Yx (1), and Y4oi+mYi = oYx (m),

so that OTy = 0yx(k), which illustrates that the cross-correlation and batch least squares equations

are the same.

To solve this system of equations, define S = OTO, a symmetric (m x m) matrix that, hopefully, is

positive definite. Define b a OTy, the right side from above; so now, we solve SO = b. Note that sij is given

by <i, kj>, where <,> denotes the inner (dot) product, and bi is the ith column (ith variable) of the b0

matrix. Find the LU decomposition of S. S = LU = LLT since S is symmetric (Cholesky).

S1 s12 S13 .. Sm ' 110 0 ... 0 ulu 12 u3... 1
s21 s22 s23 -%2m 121 122 0 0 u22 u23 ... u2m

= (3:29)I

L smi m2 sm3 ... Sm Lml m2 m3 ... Imm L 0 0 ... U(3m9

i-1 I
where uij lji, and sii > k k. Next, solve for the L matrix

lij = j -1

i=1... n _ _(3:30)

lii = sii - 1
I

k=1

To get ,solve Lv=y and U= (or LTo = v). Solve for v first 3
I

E-20
(18) I

vi= i - lijvj i= 1,...,m (3:31)
J=1

And then for fl

i -- vi - ljie jJ i=m.... (3:32)

i-I

si < 11 implies that bi should be "chopped" from the matrix, since the matrix will not be positive-
k=l

definite. 0i should be set to zero (indicating that the ith input contains no new information). The S

matrix should be reformed by removing the ith row and column, and bi should be removed from b as well.

Resolving the system should produce a solution, unless more chopping is needed. This process will have

the same effect as a singular value decomposition, without going through the difficulties of using SVD.

The FSE, T, can be found without direct recalculation as follows:

1 2

[I II TO-Ofl 2(

V-1y + 09 - 2112] (3:35)

n

1= Ty + jTsa- 2bT (3:36)t=n

A

Thus, if it is desirable to carve the coefficients, it is not necessary to solve for the estimated output Y to

compute the FSE. The above equation gives T in terms of . (assuming S and b are known).

Estimation of second-order and higher kernels follows a similar course. For example, for the

second-order kernel, the system of equations to be solved is

k2 +n kl+n

0yxx(kl, k2) = 2 Y. I h2 (i, j) oxx(i - k1) oxx(j - k2) At2 (3:37)
j=k2-n i=kl-n

where k, = 0, 1, ... , m and k2 = 0, 1, ... , m, which can be cast into a least squares formulation just as was

demonstrated for the first-order kernel.

E-21
(19)

I

3.5 Reconciliation of Recursive Least Squares (RLS) with Cross-Correlation Computation of I
Kernels

Note that Eq. 3:25 may also be solved recursively with the arrival of each new observation, I
rather than in batch mode. Given a model of the form

Y(t) = 4D(t) O(t - 1) (3:38)

define

!b(t), the input vector at time t. I
Q(t), the parameter vector at time t.

K(t), the gain vector at time t.

P(t), the inverse Hessian at time t.

e(t), the residual at time t.

X(t), the forgetting factor at time t.

y(t), the output at time t.

s(t), the approximate number of samples in the learning window at time t.

Initially, P(0), Q(0), and X(t) must be set. (t) 2t 1 - -" where s(t) is the number of sample

coefficients being estimated. Use of X < 1 allows the parameters to adapt, which is useful in trackingnonstationary systems.

The following are calculated for each new j(t):

E(t) = y(t) - tT(t)fl(t-1) Prediction Error (3:39) I
Y 0()= P(t-1)!t(t) Gain Vector (3:40)

K~t =P~t(bt) WOt + jT(t)F(t-1)v(t)
1X (t) (t)'T1(t)t1 Gan eto 3:0

P(t) 1 P(t-1) -)(t) t)j(t)P (tJ) New Covariance (3:41)

fl(t) = 0(t-1) + K(t)e(t) New Parameter Estimates (3:42)

To simplify, define

(t) = P(t-l)*(t) (3:43)

D(t) a)(t) + *T(t)R(t). (3:44) I
Now the equations become

E-22
(20)

K(t) K(t) Gain Vector (3:46)
D(t)

P 1 F(t_1) - T New Covariance (3:47)X()- ('t) I t-1)- (t)TJ

l(t) = 0(t-l) + K(t)e(t) New Parameter Estimates (3:48)

4. Control

As shown above, the plant model may be identified using batch (off-line) or recursive (on-line)
techniques. In practice, recursive least squares (RLS) technique3 are useful for identifying the plant
model when no a priori data is available. The system may also be "trained" off-line using existing
data, which will improve control performance early in the identification process. If the plant changes
with time, the RLS identification process can be used to track the plant by setting the RLS parameter X
<1.

After estimating the plant, the next task is to construct a control system that allows the desired
photodiode response (i.e., flame height or quality) to be set by the operator. Fig. 4.1 illustrates how
the model identified using the techniques outlined in Section 3 will be used in the control system. The
over-all strategy is based on inverse modeling.

Amliftude

Photodiod~e WPD) Mdltion

SetPoint (AM)

S -1 Plant PD b

PD

Figure 4.1: Control System Used to Regulate Flame Height or Quality

E-23
(21)

5. Results

5.1 Experimental Data I
Combustion data were provided by NWC, which presumably were collected over a linear

region of operation with respect to the amplitude modulation (AM) signal used to excite the system.
The data consisted of six data files, each composed of two time series 16,384 samples in length,
representing the input (AM) signal and system (photodiode) response. These data are summarized in
Table 5.1. All data were collected with the system in an open-loop configuration; that is, the
photodiode (PD) response was measured, but was not used to determine the subsequent excitation
provided to the system. I

Table 5.1: Summary of Experimental Data

Data File Data Length Data Length
(samples) (sec)

ACTDI.1 16,384 16384
ACTD2.1 16,384 16384
ACTD3.1 16,384 8.192
ACTD3.2 16,384 8.192
ACTD3.3 16,384 8.192
ACTD3.4 16,384 8.192

5.2 Plant Identification

The auto-correlation functions of the AM excitation signal for the six data files are given in Fig.

5.1. For a GWN signal, the second zero crossing occurs at T = 1, where B is the bandwidth of the signal,

seen here to be equal to approximately 50 Hz for files ACTD 1.1 and 2.1, and approximately 400 Hz for
files ACTD 3.1-3.4. The shape of the auto-correlation function also confirms that the input stimulus is
Gaussian. Note also that oxx(O) = 2PB, where P is the power or mean square value of the signal, which
is seen to be about eight times larger for data sets ACTD1.1 and 2.1 than it is for data sets ACTD 3.1-3.4.
Thus, the plant will be identified at different operating regions for the two groups of data.

The auto-correlation functions in Fig. 5.1 do not represent "ideal" GWN, which by definition
has a significant value only at lag zero; achieving a more white-noise-like auto-correlation function
would require a larger signal bandwidth. As a result, using the cross-correlation technique to directly
(i.e., using Eq. 3:12) identify the plant model will result in scaling inaccuracies; this was confirmed
using the experimental data. Kernels may be more accurately identified through the cross-correlation
technique by solving Eqs. 3:24, which was shown above to be equivalent to using batch and recursive
least squares. Thus, system identification using Volterra-Wiener analysis is equivalent to modeling I
with memory-feedforward PNNs.

Before proceeding to the plant identification and control results, we first mention a few I
interesting observations. It was found that d-;.ct (Eq. 3:12) application of the cross-correlation
Ir.iutque provided inaccurately scaled, but smooth, estimates of the first-order Wiener kernels. When
this approach was compared to that obtained using Eqs. 3224 or 3:28, depending on the number of auto-

E-24
(22)

800-

-200.

0 5 0 is 20 25 30 35 40 45 so

T (msec)

(a) ACTD 1.1

200.-

-0

0 5 10 15 20 2S 30 35 40 45 50

"C (ur-ec)

(b) AC[ED 2.1

Figure 5.1: Auto-correlation Functions of Various Data Files

E-25
(23)

I
I

200.

0.

1 10 is 20 25 30 3s 40 45 s 0

T (msec)

() ACTD 3.1

- -N A-2 .11rrvv

400,o 1-- - - -

0 S 10 is 2) 2S 30 35 40 4S s0

Ir (MWe) I
Wd) ACTD 31

Figure 5.1 (continued): Auto-correlation Functions of Various Data Files

I
I
I

E-26
(24)

60--

400 - - -

0 s 10 is 20 25 30 35 40 45 5 0

~(mSec)

(e) ACTD 3.3

400-

0 5 10 15 20 2S 30 35 40 45 5)

On (stv)

Mf ACTD 3.4

Figure 5.1 (continued): Auto-correlation Functions of Various Data Files

E-27
(25)

I
I

correlation lag values included in the data matrix, different results were obtained. Use of the auto-
correlation value at lag zero only in the data matrix of Eqs. 3:24 and 3:28 is identical to using Eq. 3:12.
Use of additional terms in the data matrix increasingly improves the kernel scaling; however, this is
at the expense of kernel smoothness. By using additional terms in the data matrix, we move
increasingly away from system identification towards curve fitting.

In an attempt to improve the smoothness of the kernel estimates, while still achieving good
scaling, we used the Levenburg-Marquardt (LM) algorithm to fit the data. Heuristically, the
approach is similar to fitting the data based on the least squares criterion; however, LM allows
additional terms to be included in the objective function that must simultaneously be satisfied in the
coefficient estimation process; the terms in the objective function may be linear or nonlinear. The

additional term employed in the objective function was [h1 (i) - hl(i - 1)12 which penalizes large i
changes in the kernel estimates at contiguous lags. This criterion worked reasonably well, as can

be seen in Fig. 5.2, where the weighting (i.e., significance) of the smoothing penalty was varied from
zero to 1000.

In the work below, due to the limited amount of experimental data available, no attempt was
made to use nonlinearities in the prediction equations. i

5.3 Memory-Feedforward Polynomial Neural Networks

The architecture of the memory-feedforward polynomial neural network used to model the
plant is given in Fig. 5.3. The first-order kernels computed using the LM technique with k=1000 are I
given in Fig. 5.4. The kernels were computed for 100 lag values, which if all are significant, represents
the memory of the plant in each case. Increasing the number of lag values did not improve the
estimation results. Note that for the ACTD 3.1-3.4 data, there is a delay of about 4 msec., which
presumably represents the time it takes the AM excitation to affect the flame. This delay was not
present in the ACTD 1.1 and 2.1 data sets. This may be due to estimation error, which is greater for
these data files due to their AM excitation characteristics; it may also reflect differences in plant
behavior at the operating region around which these systems were characterized due to power-level i
differences in the AM modulation. Note also that all data sets display a major negative peak; for files
ACTD 3.1-3.4 the peak occurs at approximately 7 msec., whereas for files ACTD 1.1 and 2.1, this peak
occurs at approximately 30 msec.

Fig. 5.5 illustrates the test setup used to evaluate how the first-order models performed in
predicting the photodiode responses to AM excitation signals. Performance results are tabulated in
Table 5.2 and in Figures 5.6 and 5.7, where each model is used to predict the photodiode response to the
AM excitation data. Fig. 5.6 gives prediction results for the same AM excitation used to identify the
model; Fig. 5.7 gives an example of the fitting performance when the AM excitation was different from
that used (viz. file ACTD 3.1) to identify the plant. Fig. 5.6 thus corresponds to the diagonal terms in I
Table 52, and Fig. 5.7 corresponds to the off-diagonals in this table for the row labeled ACID 3.1.

Note in Table 5.2, the data on the diagonal represents the performance on the fitting data,
whereas off-diagonals represent the evaluation data. In each of the two operating regions around
which the systems was characterized, the models performed nearly as well on the fitting data as they
did on the evaluation data. The models have thus extracted the relevant information from the
available data. For comparison purposes, similar data are provided in Table 5.3 where the smoothing I
penalty was set equal to zero; this is equivalent to using the least squares fitting criterion.
Interestingly, prediction accuracy was independent of the smoothness of the kernel even when the plant
in Fig. 5.5 was identified on a data file different from the one used for evaluation. Because of this

E-28
(26)

.5

0. A

0.5.

0~, 10 152b 2

(b) k 0.125

Figure 5.2: First-Order Kernel Computed by Levenberg-Marquardt Algorithm
using Different Smoothing Penalty (k

E-29
(27)

CSI
Z s I _ _

___3 _ ___ 2b__ 2'__ ___

'T (miec)

Wk=100

Figure___ 5.2_ (cotined) Firt-Ode Kernel CoptdbIeebr-aqa

Aloih sn5DfeetSothn eat

I. ____ _E__30

O(28I

x(t)

x(t-1)

x(t-2) Linear

Combination A
with YW(t)b

Delay Constant
, (51 Terms)

x(t-49)

Figure 5.3: Architecture of Memory-Feedforward Polynomial Neural Network Used
in the Experiments

finding, either LM or least squares fitting could have been used for plant estimation. It should be
mentioned that LM, like batch least squares, can also be formulated into a recursive implementation.

5.4 Memory-Feedback Polynomial Neural Networks

The architecture of the memory-feedback polynomial neural network used to model the
plant is given in Fig. 5.8. Table 5.4 and Figures 5.9 and 5.10 provide the results for the memory-feedback
PNNs used in the same experiment as conducted in Section 5.2. Note that performance is improved over
the memory-feedforward case even though the memory-feedback model had more than five times
fewer internal degrees of freedom.

5.5 Plant Control

The models identified in Section 5.2 were next used in the feedforward control system
illustrated in Fig. 5.11. The plant in the figure was taken to be the PNN model for the file ACTD 3.1.
The approach is to use the inverse of the identified model (i.e., P-1) for each of the data sets in open-
loop plant control. A unit step input signal was used to evaluate the performance of the controller;
these results are given in Figures 5.12, where the step input and the system responses are plotted
together. Note that in Fig. 5.12a, as expected, the desired and actual responses are the same; this is
because PP-1, by definition, is unity in this case. Due to differences in the estimated P-1 for the other
data files, however, PP-1 is not unity. Because the plant is different for files ACTD 1.1 and 2.1, these
responses are not shown.

E- 31
(29)

0I

-0.3.-4

0 10 20 30 40 '50 60 70 80 90 100

T (msec)

(a) ACT7D 1.1

0.4. -0 -D 4D -o do - - - - -6

1 2)

T (msec)

(b) ACWD 2.1

Figure 5.4: First-Order Kernels of IdentifieLL Phn=ts Computed by Levenberg-

Marquardt Algorithm Using Smoothing Penalty of k=1000

E-32

(30)I

0-5.- - - - - . - - -

-
,

O 5 10 is 20 25 .30 35 40 45 50
(msec)

Wc ACTD 3.1

0 5 10 i5 20 25 30 35 40 45 50
T (msec)

Wd ACTD 3.2

Figure 5.4 (continued): First-Order Kernels of Identified Plants Computed by
Levenberg-Marquardt Algorithm Using Smoothing Penalty
of k=1000

E- 33
(31)

I
I

0.5 /-

0 I
.5+5

t (msec)

(e) ACTD 3.3

I

~I

I
-0.5. -- -

-1. I
0 5 10 15 20 25 30 35 40 45 50

T (msec)

(f) ACTD 3.4

Figure 5.4 (continued): First-Order Kernels of Identified Plants Computed by I
Levenberg-Marquardt Algorithm Using Smoothing Penalty
of k=1000

I
E- 34
(32)

AmplitudeModula _on

(AM) A
PD

> Plant P g

Figure 5.5: Use of Plant Model in Estimation Experiment

Table 5.2: Results of Plant Output Prediction Experiment Using Memory-
Feedforward PNN With Smoothing Penalty k=1000

Eval ACTD 1.1 ACTD 2.1 ACTD 3.1 ACTD 3.2 ACTD 3.3 ACTD 3.4I Fit 4
ACTD 1.1 8.68 10.38 15.87 16.89 15.94 17.14
ACTD 2.1 8.78 10.27 15.69 16.75 15.80 16.98
ACTD 3.1 25.72 27.37 1.43 1.61 1.57 1.47
ACTD 3.2 26.80 28.51 1.45 1.59 1.58 1.45
ACTD 3.3 25.83 27.55 1.44 1.61 1.56 1.48
ACTD 3.4 26.87 28.54 1.46 1.60 1.59 1.44

Table 5.3: Results of Plant Output Prediction Experiment Using Memory-
Feedforward PNN With Smoothing Penalty k=O

EvalP ACTD 1.1 ACTD 2.1 ACTD 3.1 ACTD 3.2 ACTD3.3 ACID 3.4

IFit 4
ACTD 1.1 8.66 10.34 18.38 19.40 18.49 19.69
ACTD 2.1 8.78 10.23 33.01 34.07 33.19 34.34
ACTD 3.1 25.74 27.39 1.43 1.61 1.57 1.47
ACTD 3.2 26.81 28.52 1.45 1.59 1.58 1.45
ACTD 3.3 25.85 27.58 1.44 1.61 1.56 1.48
ACTD 3.4 26.88 28.56 1.46 1.61 1.60 1.44

E-35
(33)

I
I

II
1. I

S

Tue (m-c.)

(c) ACTD 3.1

',
7 I

"PC)

2 I
-.

Time (msem)

(d) ACTD 3.2

Figure 5.6: Memory-Feedforward PNN Prediction of Photodiode Output Using the
Same AM Excitation Signal Used to Fit the Model

I
E-36
(3 4) I

I8

7

6

4 .

0]

-1

-3

Time (rsec.)

(e) ACTD 3.3

2

_ 1O

I - .

I ! 7E lI50 "i5 " 1!
rm (Uec.) i o c
(d) ACTD 3.4

Figure 5.6 (continued): Memory-Feedforward PNN Prediction of Photodiode Output

Using the Same AM Excitation Signal Used to Fit the Model

E-37

(35)

7

I

6

4

~I

-3
0 25 50 75 100 125 150 3

Time (nuec.)

(c) ACTD 3-.

7.

e 2.

1 I
~II.

0 A os 40 12 140
Time (msec.)

(d) ACTD 3.3

Figure 5.7: Memory-Feedforward PNN Prediction of Photodiode Output for AM I
Excitation Signals Different Than Was Used to Fit the Model (viz. file
AClD 3.1)

E-38
(36)

7.

-

2-PD

.3
0 25 5075 100 125 150

Time (msec.)

(e) ACTID 3.4

Figure 5.7 (continued): Memory-Feedforward PNN Prediction of Photodiode
Output for AM Excitation Signals Different Than Was Used
to Fit the Model (viz, file ACTD 3.1)

x(t-4)

~-39)- ihf0
(37)an

I
I

- IO
5 1 II

"I~I
~I

Time (nner-)

(c) ACTD 3.1

-PI

d 155, & 5 r 11

7

'rue 6n-, I
(d) ACTD 3.2

I

Figure 5.9: Memory-Feedback PNN Prediction of Photodiode Output Using the
Same AM Excitation Signal Used to Fit the Model

E-40(38)I

8-

7.

I.

Tume (msm)

(e) ACID 3.3

8.

7"

8.
C

i 1,

-1:

3 45 15

Tune (Me)

(f) ACTD 3.4

Figure 5.9 (continued): Memory-Feedback PNN Prediction of Photodiode Output
Using the Same AM Excitation Signal Used to Fit the Model

E-41
(39)

I
I

B

2.

1_ 1I

.2 I-POt I
.3-

0 25 50 751S0 12S 5
T'me (msec.)

(c) ACD 3.

7

6

5 I4

-3

o 25 50 75 100 125 1503
"Time (nrec.)

(d) ACTD 3.3I

Figure 5.10: Memory-Feedback PNN Prediction of Thotodiode Output UsingI
Different AM Excitation Signal Than Was Used to Fit the Model (viz.I
ACTD 3.1) I

E-42
(40)

7.

I.

-1.

.2.

-3
0 2550 75 160 125 150

Tune (msec.)

(e) ACTD 3.4

Figure 5.10 (continued): Memory.-Feedback PNN Prediction of Photodiode Output
for AM Excitation Signals Different Than Was Used to Fit
the Model (viz, file ACTD 3.1)

Amplitude
Photodiode (PD) Modulation
SetPoint (AM) A

P- 30 Flant PD

Figure 5.11 Use of Model Inverse in Feedforward Control Experiment

E- 43
(41)

I
I

1.8 ,

1
21

1.4 I

1 1.2-
1'

.. 0.8.

0.4.

I

AI
rune (msec.)

(a) ACTD 3.12

1.8

1.4

1.2

0. 4I

0.8,

-- 1

Tin- (nuec.)

(b) ACTD 3.2

Figure 5.12: Unit Step Input and Response of Feed-Forward Controller I

I
(42) 3.

2-

1.

1.2

1

1.4

Wd ACTD 3.4

1.44

1.23

I
I

Table 5.4: Results of Plant Output Prediction Experiment Using Memory-Feedback PNN

Eval ACTD 1.1 ACTD 2.1 ACTD 3.1 ACTD 3.2 ACTD 3.3 ACTD 3.4 U
Fit 4 I

ACTD 1.1 8.52 9.91 15.74 16.68 15.90 19.54
ACTD 2.1 8.99 9.50 15.85 17.01 16.05 17.71
ACTD 3.1 25.86 27.42 1.40 1.56 1.53 1.43
ACTD 3.2 26.87 28.42 1.42 1.54 1.54 1.42
ACTD 3.3 25.99 27.61 1.40 1.56 1.52 1.44
ACTD 3.4 26.98 28.55 1.43 1.55 1.56 1.40I

I
6. Discussion

Memory-feedback PNN performance was shown to exceed that of memory-feedforward PNNs
in modeling stochastic combustion process data while using fewer coefficients to fit the data. This is
analogous to infinite impulse response modeling (IIR) as compared to finite impulse response (FIR) I
modeling. It is also similar to curve fitting using polynomial functions where, with enough coefficients,
curves can be made to pass exactly through all data points. Using a large numbers of coefficients,
however, limits the performance of such models on previously urseen evaluation data. In curve-fitting,
this is reflected by large oscillations in the fitting functions in between data points and outside of the
region used to fit the data (e.g., extrapolation). Fewer internal degrees of freedom provide more robustmodels. 3

Memory-feedforward PNNs were shown to be a generalization of the classical Volterra-
Wiener modeling approach. Note that if previous measurements of estimated quantities (e.g., PD
measurements in the combustion process) are available, these may also be used to estimate future
outpu-ts; such a model is said to include autoregressive terms. In modeling a process, say y = f(x), this
information is not inherently useful since y is completely determined by some (in general nonlinear)
function of x. However, for a model y = f(x,y), autoregressive information is particularly useful in that
y is necessarily a nonlinear function of y, otherwise y = f(x,y) could be rewritten as y = fx). Another
way to think about the usefulness of autoregressive terms is that they provide information exactly (not
approximately as for lagged values of A) concerning the region of operation of the system to be taken
into consideration in the modeling process. This allows different behavior at different operating points I
in general to be modeled.

Dynamic PNNs go beyond Volterra-Wiener modeling because the latter are limited to
application in finite-memory systems. Thus, dynamic PNNs may be used, for example, to model
oscillators as naturally as they model finite-memory systems. For example, the second-order constant-
coefficient ordinary differential equation (ODE)

y(t) + a1 (t) + a2 y(t) = b0 x(t)
x(t) = cos (2t)

with initial conditions =

and (0) = Yo

E-46
(44) I

has the solution
y(t) = c1 exp(.t) cos(4t) + c2 exp(Xt) sin(IJt) + A sin (2t) + B cos (2t)

where a a2 -a 1

2 2

2a 1 b0 (a2 - 4) b0A= 2 2 B= 2 2

4 a1 + a2 - 8 a +16 4 a2 + a2 - 8 a +16
2 2 1 2 2

c= y0 -B c2 = 2A-Xc

Using a finite-difference approximation to the ODE, a dynamic PNN of the form

A A A

n= 0 Yn-I + 01Yn-2 + 2 Xn-1

where
2b

0o - 2 +a aAt
0 a 2aAt2

-2 + a At

4

2 2 + a1At

can be used to exactly predict the output [Cellucci 1991]. To exactly model such as system using an FIR
model would require an infinite number of coefficients, i.e., infinite memory. The only way around this
is to accept a less accurate model using a finite number :,f coefficients or to use a change of variable of
the input and output signals to remove the oscillatory behavior.

In addition, PNNs allow easy incorporation of any available a priori structural information in
the modeling process, allowing very flexible modeling. A priori infornation is much more difficult to
take advantage of using other modeling techniques, such a; in Volterra-Wiener system identification,
when complete structural information is not available.

7. Future Directions

The next step in the investigation of dynamic PNNs will be to include autoregressive terms
(i.e., previous values of the output process being predicted) in the plant control model. Further accuracy
is expected since this represents access to actual photodiode measurements rather than just their
estimates, which may further reduce the number of parameters that must be estimated. This may
allow second-order models to be computed even with the limited data that are currently available.

E-47
(45)

I

Note, however, that using autoregressive terms in an emulator is not possible, since there is no I
measurement of the actual output process available. The final design will then be used in a closed-loop
controller of the actual combustion process.

The possibility of exciting the system using selected stimulus patterns, rather than GWN,
should be taken into consideration in future experiments on the actual combustion process. This may
allow better modeling accuracy to be achieved, as discussed in Section 3.3 of this report.

Additional data will help improve the modeling accuracy that has been achieved to date.
Further investigation will be required to determine if the estimate of the plant model can be improved

Iupon with the inclusion of nonlinear terms.

i
I
I
I
I
I
I
I
i
I
I

E-48
(46)

8. References (Appendix E)

Barron, A.R. Properties of the Predicted Squared Error. A Criterion for Selecting Variables, Ranking
Models, and Determining Order, Adaptronics, Inc., McLean, VA, 1981.

IBarron, A.R. "Predicted Squared Error: A criterion for automatic model selection," Self-Organizing
Methods in Modeling: GMDH Type Algorithms (S.J. Farlow, Ed.), Marcel Dekker, Inc., NY,IChap. 4, pp. 87-103, 1984.

Barron, A.R. and R.L. Barron. "Statistical learning networks: A unifying view," Proc. 20th Symposium
on the Interface: Computing Science and Statistics, Reston, VA, April 1988.

Barron, R. L., R. L. Celluci, P. R. Jordan, III, et al., Applications of polynomial neural networks to FDIE
and reconfigurable flight control," Proc. 42nd Ann. NAECON, May 1990.

I Cadzow, J,A., Signal Processing via Least Squares Error Modeling, IEEE Signal Processing Magazine,

Oct. 1990.

Cellucci, R.L., Barron Associates, Inc. Internal Memorandum, 1991.

Farley, B.G. and W.A. Clark, "Simulation of self-organizing systems by digital computers," IRE Trans.
on Inform. Theory, Vol. PGIT-4, pp. 76-84, 1954.

Ljung, L. and T. S6derstr6m, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA,1 1983.

Ljung, L., "Adaptation using recursive parameter estimation," Chapter 8 in Advances in Statistical
Signal Processing - Vol. 1: Estimation., H. V. Poor, Ed. JAI Press; Greenwich, CT, 1987.

Marmarelis, P.Z. and V.Z. Marmarelis, Analysis of Physiological Systems: The White-Noise
Approach, Plenum Press, New York, 1978.

I Nigro, T. M., D. W. Abbott, and R. L. Barron, Comparative Study: Static and Dynamic Polynomial
Neural Networks for Real-Time Optimum TPBV Guidance of a Tactical Air Intercept Missile,
Barron Associates, Inc. Technical Progress Rept. 2 for Office of Naval Research, Contract
N00014-89-C-0137, April 1990.

Rosenblatt, F., "The Perceptron," Cornell Aeronaut. Lab. Rept. VG-1196-G-1, Jan. 1958.

S6derstr6m, T. and P. Stoica, System Identification, Prentice Hall Int'l. (UK) LTD, 1989.

Widrow, B. and M.E. Hoff, "Adaptive switching circuits," IRE Wescon Convention Record, pp. 96-104,
1960.

I

E-49
(47)

